For God so loved the world, that He gave His only begotten Son, that all who believe in Him should not perish but have everlasting life
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

864 lines
32 KiB

<?php
/**
* @package JAMA
*
* Class to obtain eigenvalues and eigenvectors of a real matrix.
*
* If A is symmetric, then A = V*D*V' where the eigenvalue matrix D
* is diagonal and the eigenvector matrix V is orthogonal (i.e.
* A = V.times(D.times(V.transpose())) and V.times(V.transpose())
* equals the identity matrix).
*
* If A is not symmetric, then the eigenvalue matrix D is block diagonal
* with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
* lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
* columns of V represent the eigenvectors in the sense that A*V = V*D,
* i.e. A.times(V) equals V.times(D). The matrix V may be badly
* conditioned, or even singular, so the validity of the equation
* A = V*D*inverse(V) depends upon V.cond().
*
* @author Paul Meagher
* @license PHP v3.0
* @version 1.1
*/
class EigenvalueDecomposition
{
/**
* Row and column dimension (square matrix).
* @var int
*/
private $n;
/**
* Internal symmetry flag.
* @var int
*/
private $issymmetric;
/**
* Arrays for internal storage of eigenvalues.
* @var array
*/
private $d = array();
private $e = array();
/**
* Array for internal storage of eigenvectors.
* @var array
*/
private $V = array();
/**
* Array for internal storage of nonsymmetric Hessenberg form.
* @var array
*/
private $H = array();
/**
* Working storage for nonsymmetric algorithm.
* @var array
*/
private $ort;
/**
* Used for complex scalar division.
* @var float
*/
private $cdivr;
private $cdivi;
/**
* Symmetric Householder reduction to tridiagonal form.
*
* @access private
*/
private function tred2()
{
// This is derived from the Algol procedures tred2 by
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
$this->d = $this->V[$this->n-1];
// Householder reduction to tridiagonal form.
for ($i = $this->n-1; $i > 0; --$i) {
$i_ = $i -1;
// Scale to avoid under/overflow.
$h = $scale = 0.0;
$scale += array_sum(array_map(abs, $this->d));
if ($scale == 0.0) {
$this->e[$i] = $this->d[$i_];
$this->d = array_slice($this->V[$i_], 0, $i_);
for ($j = 0; $j < $i; ++$j) {
$this->V[$j][$i] = $this->V[$i][$j] = 0.0;
}
} else {
// Generate Householder vector.
for ($k = 0; $k < $i; ++$k) {
$this->d[$k] /= $scale;
$h += pow($this->d[$k], 2);
}
$f = $this->d[$i_];
$g = sqrt($h);
if ($f > 0) {
$g = -$g;
}
$this->e[$i] = $scale * $g;
$h = $h - $f * $g;
$this->d[$i_] = $f - $g;
for ($j = 0; $j < $i; ++$j) {
$this->e[$j] = 0.0;
}
// Apply similarity transformation to remaining columns.
for ($j = 0; $j < $i; ++$j) {
$f = $this->d[$j];
$this->V[$j][$i] = $f;
$g = $this->e[$j] + $this->V[$j][$j] * $f;
for ($k = $j+1; $k <= $i_; ++$k) {
$g += $this->V[$k][$j] * $this->d[$k];
$this->e[$k] += $this->V[$k][$j] * $f;
}
$this->e[$j] = $g;
}
$f = 0.0;
for ($j = 0; $j < $i; ++$j) {
$this->e[$j] /= $h;
$f += $this->e[$j] * $this->d[$j];
}
$hh = $f / (2 * $h);
for ($j=0; $j < $i; ++$j) {
$this->e[$j] -= $hh * $this->d[$j];
}
for ($j = 0; $j < $i; ++$j) {
$f = $this->d[$j];
$g = $this->e[$j];
for ($k = $j; $k <= $i_; ++$k) {
$this->V[$k][$j] -= ($f * $this->e[$k] + $g * $this->d[$k]);
}
$this->d[$j] = $this->V[$i-1][$j];
$this->V[$i][$j] = 0.0;
}
}
$this->d[$i] = $h;
}
// Accumulate transformations.
for ($i = 0; $i < $this->n-1; ++$i) {
$this->V[$this->n-1][$i] = $this->V[$i][$i];
$this->V[$i][$i] = 1.0;
$h = $this->d[$i+1];
if ($h != 0.0) {
for ($k = 0; $k <= $i; ++$k) {
$this->d[$k] = $this->V[$k][$i+1] / $h;
}
for ($j = 0; $j <= $i; ++$j) {
$g = 0.0;
for ($k = 0; $k <= $i; ++$k) {
$g += $this->V[$k][$i+1] * $this->V[$k][$j];
}
for ($k = 0; $k <= $i; ++$k) {
$this->V[$k][$j] -= $g * $this->d[$k];
}
}
}
for ($k = 0; $k <= $i; ++$k) {
$this->V[$k][$i+1] = 0.0;
}
}
$this->d = $this->V[$this->n-1];
$this->V[$this->n-1] = array_fill(0, $j, 0.0);
$this->V[$this->n-1][$this->n-1] = 1.0;
$this->e[0] = 0.0;
}
/**
* Symmetric tridiagonal QL algorithm.
*
* This is derived from the Algol procedures tql2, by
* Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
* Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
* Fortran subroutine in EISPACK.
*
* @access private
*/
private function tql2()
{
for ($i = 1; $i < $this->n; ++$i) {
$this->e[$i-1] = $this->e[$i];
}
$this->e[$this->n-1] = 0.0;
$f = 0.0;
$tst1 = 0.0;
$eps = pow(2.0, -52.0);
for ($l = 0; $l < $this->n; ++$l) {
// Find small subdiagonal element
$tst1 = max($tst1, abs($this->d[$l]) + abs($this->e[$l]));
$m = $l;
while ($m < $this->n) {
if (abs($this->e[$m]) <= $eps * $tst1) {
break;
}
++$m;
}
// If m == l, $this->d[l] is an eigenvalue,
// otherwise, iterate.
if ($m > $l) {
$iter = 0;
do {
// Could check iteration count here.
$iter += 1;
// Compute implicit shift
$g = $this->d[$l];
$p = ($this->d[$l+1] - $g) / (2.0 * $this->e[$l]);
$r = hypo($p, 1.0);
if ($p < 0) {
$r *= -1;
}
$this->d[$l] = $this->e[$l] / ($p + $r);
$this->d[$l+1] = $this->e[$l] * ($p + $r);
$dl1 = $this->d[$l+1];
$h = $g - $this->d[$l];
for ($i = $l + 2; $i < $this->n; ++$i) {
$this->d[$i] -= $h;
}
$f += $h;
// Implicit QL transformation.
$p = $this->d[$m];
$c = 1.0;
$c2 = $c3 = $c;
$el1 = $this->e[$l + 1];
$s = $s2 = 0.0;
for ($i = $m-1; $i >= $l; --$i) {
$c3 = $c2;
$c2 = $c;
$s2 = $s;
$g = $c * $this->e[$i];
$h = $c * $p;
$r = hypo($p, $this->e[$i]);
$this->e[$i+1] = $s * $r;
$s = $this->e[$i] / $r;
$c = $p / $r;
$p = $c * $this->d[$i] - $s * $g;
$this->d[$i+1] = $h + $s * ($c * $g + $s * $this->d[$i]);
// Accumulate transformation.
for ($k = 0; $k < $this->n; ++$k) {
$h = $this->V[$k][$i+1];
$this->V[$k][$i+1] = $s * $this->V[$k][$i] + $c * $h;
$this->V[$k][$i] = $c * $this->V[$k][$i] - $s * $h;
}
}
$p = -$s * $s2 * $c3 * $el1 * $this->e[$l] / $dl1;
$this->e[$l] = $s * $p;
$this->d[$l] = $c * $p;
// Check for convergence.
} while (abs($this->e[$l]) > $eps * $tst1);
}
$this->d[$l] = $this->d[$l] + $f;
$this->e[$l] = 0.0;
}
// Sort eigenvalues and corresponding vectors.
for ($i = 0; $i < $this->n - 1; ++$i) {
$k = $i;
$p = $this->d[$i];
for ($j = $i+1; $j < $this->n; ++$j) {
if ($this->d[$j] < $p) {
$k = $j;
$p = $this->d[$j];
}
}
if ($k != $i) {
$this->d[$k] = $this->d[$i];
$this->d[$i] = $p;
for ($j = 0; $j < $this->n; ++$j) {
$p = $this->V[$j][$i];
$this->V[$j][$i] = $this->V[$j][$k];
$this->V[$j][$k] = $p;
}
}
}
}
/**
* Nonsymmetric reduction to Hessenberg form.
*
* This is derived from the Algol procedures orthes and ortran,
* by Martin and Wilkinson, Handbook for Auto. Comp.,
* Vol.ii-Linear Algebra, and the corresponding
* Fortran subroutines in EISPACK.
*
* @access private
*/
private function orthes()
{
$low = 0;
$high = $this->n-1;
for ($m = $low+1; $m <= $high-1; ++$m) {
// Scale column.
$scale = 0.0;
for ($i = $m; $i <= $high; ++$i) {
$scale = $scale + abs($this->H[$i][$m-1]);
}
if ($scale != 0.0) {
// Compute Householder transformation.
$h = 0.0;
for ($i = $high; $i >= $m; --$i) {
$this->ort[$i] = $this->H[$i][$m-1] / $scale;
$h += $this->ort[$i] * $this->ort[$i];
}
$g = sqrt($h);
if ($this->ort[$m] > 0) {
$g *= -1;
}
$h -= $this->ort[$m] * $g;
$this->ort[$m] -= $g;
// Apply Householder similarity transformation
// H = (I -u * u' / h) * H * (I -u * u') / h)
for ($j = $m; $j < $this->n; ++$j) {
$f = 0.0;
for ($i = $high; $i >= $m; --$i) {
$f += $this->ort[$i] * $this->H[$i][$j];
}
$f /= $h;
for ($i = $m; $i <= $high; ++$i) {
$this->H[$i][$j] -= $f * $this->ort[$i];
}
}
for ($i = 0; $i <= $high; ++$i) {
$f = 0.0;
for ($j = $high; $j >= $m; --$j) {
$f += $this->ort[$j] * $this->H[$i][$j];
}
$f = $f / $h;
for ($j = $m; $j <= $high; ++$j) {
$this->H[$i][$j] -= $f * $this->ort[$j];
}
}
$this->ort[$m] = $scale * $this->ort[$m];
$this->H[$m][$m-1] = $scale * $g;
}
}
// Accumulate transformations (Algol's ortran).
for ($i = 0; $i < $this->n; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$this->V[$i][$j] = ($i == $j ? 1.0 : 0.0);
}
}
for ($m = $high-1; $m >= $low+1; --$m) {
if ($this->H[$m][$m-1] != 0.0) {
for ($i = $m+1; $i <= $high; ++$i) {
$this->ort[$i] = $this->H[$i][$m-1];
}
for ($j = $m; $j <= $high; ++$j) {
$g = 0.0;
for ($i = $m; $i <= $high; ++$i) {
$g += $this->ort[$i] * $this->V[$i][$j];
}
// Double division avoids possible underflow
$g = ($g / $this->ort[$m]) / $this->H[$m][$m-1];
for ($i = $m; $i <= $high; ++$i) {
$this->V[$i][$j] += $g * $this->ort[$i];
}
}
}
}
}
/**
* Performs complex division.
*
* @access private
*/
private function cdiv($xr, $xi, $yr, $yi)
{
if (abs($yr) > abs($yi)) {
$r = $yi / $yr;
$d = $yr + $r * $yi;
$this->cdivr = ($xr + $r * $xi) / $d;
$this->cdivi = ($xi - $r * $xr) / $d;
} else {
$r = $yr / $yi;
$d = $yi + $r * $yr;
$this->cdivr = ($r * $xr + $xi) / $d;
$this->cdivi = ($r * $xi - $xr) / $d;
}
}
/**
* Nonsymmetric reduction from Hessenberg to real Schur form.
*
* Code is derived from the Algol procedure hqr2,
* by Martin and Wilkinson, Handbook for Auto. Comp.,
* Vol.ii-Linear Algebra, and the corresponding
* Fortran subroutine in EISPACK.
*
* @access private
*/
private function hqr2()
{
// Initialize
$nn = $this->n;
$n = $nn - 1;
$low = 0;
$high = $nn - 1;
$eps = pow(2.0, -52.0);
$exshift = 0.0;
$p = $q = $r = $s = $z = 0;
// Store roots isolated by balanc and compute matrix norm
$norm = 0.0;
for ($i = 0; $i < $nn; ++$i) {
if (($i < $low) or ($i > $high)) {
$this->d[$i] = $this->H[$i][$i];
$this->e[$i] = 0.0;
}
for ($j = max($i-1, 0); $j < $nn; ++$j) {
$norm = $norm + abs($this->H[$i][$j]);
}
}
// Outer loop over eigenvalue index
$iter = 0;
while ($n >= $low) {
// Look for single small sub-diagonal element
$l = $n;
while ($l > $low) {
$s = abs($this->H[$l-1][$l-1]) + abs($this->H[$l][$l]);
if ($s == 0.0) {
$s = $norm;
}
if (abs($this->H[$l][$l-1]) < $eps * $s) {
break;
}
--$l;
}
// Check for convergence
// One root found
if ($l == $n) {
$this->H[$n][$n] = $this->H[$n][$n] + $exshift;
$this->d[$n] = $this->H[$n][$n];
$this->e[$n] = 0.0;
--$n;
$iter = 0;
// Two roots found
} elseif ($l == $n-1) {
$w = $this->H[$n][$n-1] * $this->H[$n-1][$n];
$p = ($this->H[$n-1][$n-1] - $this->H[$n][$n]) / 2.0;
$q = $p * $p + $w;
$z = sqrt(abs($q));
$this->H[$n][$n] = $this->H[$n][$n] + $exshift;
$this->H[$n-1][$n-1] = $this->H[$n-1][$n-1] + $exshift;
$x = $this->H[$n][$n];
// Real pair
if ($q >= 0) {
if ($p >= 0) {
$z = $p + $z;
} else {
$z = $p - $z;
}
$this->d[$n-1] = $x + $z;
$this->d[$n] = $this->d[$n-1];
if ($z != 0.0) {
$this->d[$n] = $x - $w / $z;
}
$this->e[$n-1] = 0.0;
$this->e[$n] = 0.0;
$x = $this->H[$n][$n-1];
$s = abs($x) + abs($z);
$p = $x / $s;
$q = $z / $s;
$r = sqrt($p * $p + $q * $q);
$p = $p / $r;
$q = $q / $r;
// Row modification
for ($j = $n-1; $j < $nn; ++$j) {
$z = $this->H[$n-1][$j];
$this->H[$n-1][$j] = $q * $z + $p * $this->H[$n][$j];
$this->H[$n][$j] = $q * $this->H[$n][$j] - $p * $z;
}
// Column modification
for ($i = 0; $i <= $n; ++$i) {
$z = $this->H[$i][$n-1];
$this->H[$i][$n-1] = $q * $z + $p * $this->H[$i][$n];
$this->H[$i][$n] = $q * $this->H[$i][$n] - $p * $z;
}
// Accumulate transformations
for ($i = $low; $i <= $high; ++$i) {
$z = $this->V[$i][$n-1];
$this->V[$i][$n-1] = $q * $z + $p * $this->V[$i][$n];
$this->V[$i][$n] = $q * $this->V[$i][$n] - $p * $z;
}
// Complex pair
} else {
$this->d[$n-1] = $x + $p;
$this->d[$n] = $x + $p;
$this->e[$n-1] = $z;
$this->e[$n] = -$z;
}
$n = $n - 2;
$iter = 0;
// No convergence yet
} else {
// Form shift
$x = $this->H[$n][$n];
$y = 0.0;
$w = 0.0;
if ($l < $n) {
$y = $this->H[$n-1][$n-1];
$w = $this->H[$n][$n-1] * $this->H[$n-1][$n];
}
// Wilkinson's original ad hoc shift
if ($iter == 10) {
$exshift += $x;
for ($i = $low; $i <= $n; ++$i) {
$this->H[$i][$i] -= $x;
}
$s = abs($this->H[$n][$n-1]) + abs($this->H[$n-1][$n-2]);
$x = $y = 0.75 * $s;
$w = -0.4375 * $s * $s;
}
// MATLAB's new ad hoc shift
if ($iter == 30) {
$s = ($y - $x) / 2.0;
$s = $s * $s + $w;
if ($s > 0) {
$s = sqrt($s);
if ($y < $x) {
$s = -$s;
}
$s = $x - $w / (($y - $x) / 2.0 + $s);
for ($i = $low; $i <= $n; ++$i) {
$this->H[$i][$i] -= $s;
}
$exshift += $s;
$x = $y = $w = 0.964;
}
}
// Could check iteration count here.
$iter = $iter + 1;
// Look for two consecutive small sub-diagonal elements
$m = $n - 2;
while ($m >= $l) {
$z = $this->H[$m][$m];
$r = $x - $z;
$s = $y - $z;
$p = ($r * $s - $w) / $this->H[$m+1][$m] + $this->H[$m][$m+1];
$q = $this->H[$m+1][$m+1] - $z - $r - $s;
$r = $this->H[$m+2][$m+1];
$s = abs($p) + abs($q) + abs($r);
$p = $p / $s;
$q = $q / $s;
$r = $r / $s;
if ($m == $l) {
break;
}
if (abs($this->H[$m][$m-1]) * (abs($q) + abs($r)) <
$eps * (abs($p) * (abs($this->H[$m-1][$m-1]) + abs($z) + abs($this->H[$m+1][$m+1])))) {
break;
}
--$m;
}
for ($i = $m + 2; $i <= $n; ++$i) {
$this->H[$i][$i-2] = 0.0;
if ($i > $m+2) {
$this->H[$i][$i-3] = 0.0;
}
}
// Double QR step involving rows l:n and columns m:n
for ($k = $m; $k <= $n-1; ++$k) {
$notlast = ($k != $n-1);
if ($k != $m) {
$p = $this->H[$k][$k-1];
$q = $this->H[$k+1][$k-1];
$r = ($notlast ? $this->H[$k+2][$k-1] : 0.0);
$x = abs($p) + abs($q) + abs($r);
if ($x != 0.0) {
$p = $p / $x;
$q = $q / $x;
$r = $r / $x;
}
}
if ($x == 0.0) {
break;
}
$s = sqrt($p * $p + $q * $q + $r * $r);
if ($p < 0) {
$s = -$s;
}
if ($s != 0) {
if ($k != $m) {
$this->H[$k][$k-1] = -$s * $x;
} elseif ($l != $m) {
$this->H[$k][$k-1] = -$this->H[$k][$k-1];
}
$p = $p + $s;
$x = $p / $s;
$y = $q / $s;
$z = $r / $s;
$q = $q / $p;
$r = $r / $p;
// Row modification
for ($j = $k; $j < $nn; ++$j) {
$p = $this->H[$k][$j] + $q * $this->H[$k+1][$j];
if ($notlast) {
$p = $p + $r * $this->H[$k+2][$j];
$this->H[$k+2][$j] = $this->H[$k+2][$j] - $p * $z;
}
$this->H[$k][$j] = $this->H[$k][$j] - $p * $x;
$this->H[$k+1][$j] = $this->H[$k+1][$j] - $p * $y;
}
// Column modification
for ($i = 0; $i <= min($n, $k+3); ++$i) {
$p = $x * $this->H[$i][$k] + $y * $this->H[$i][$k+1];
if ($notlast) {
$p = $p + $z * $this->H[$i][$k+2];
$this->H[$i][$k+2] = $this->H[$i][$k+2] - $p * $r;
}
$this->H[$i][$k] = $this->H[$i][$k] - $p;
$this->H[$i][$k+1] = $this->H[$i][$k+1] - $p * $q;
}
// Accumulate transformations
for ($i = $low; $i <= $high; ++$i) {
$p = $x * $this->V[$i][$k] + $y * $this->V[$i][$k+1];
if ($notlast) {
$p = $p + $z * $this->V[$i][$k+2];
$this->V[$i][$k+2] = $this->V[$i][$k+2] - $p * $r;
}
$this->V[$i][$k] = $this->V[$i][$k] - $p;
$this->V[$i][$k+1] = $this->V[$i][$k+1] - $p * $q;
}
} // ($s != 0)
} // k loop
} // check convergence
} // while ($n >= $low)
// Backsubstitute to find vectors of upper triangular form
if ($norm == 0.0) {
return;
}
for ($n = $nn-1; $n >= 0; --$n) {
$p = $this->d[$n];
$q = $this->e[$n];
// Real vector
if ($q == 0) {
$l = $n;
$this->H[$n][$n] = 1.0;
for ($i = $n-1; $i >= 0; --$i) {
$w = $this->H[$i][$i] - $p;
$r = 0.0;
for ($j = $l; $j <= $n; ++$j) {
$r = $r + $this->H[$i][$j] * $this->H[$j][$n];
}
if ($this->e[$i] < 0.0) {
$z = $w;
$s = $r;
} else {
$l = $i;
if ($this->e[$i] == 0.0) {
if ($w != 0.0) {
$this->H[$i][$n] = -$r / $w;
} else {
$this->H[$i][$n] = -$r / ($eps * $norm);
}
// Solve real equations
} else {
$x = $this->H[$i][$i+1];
$y = $this->H[$i+1][$i];
$q = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i];
$t = ($x * $s - $z * $r) / $q;
$this->H[$i][$n] = $t;
if (abs($x) > abs($z)) {
$this->H[$i+1][$n] = (-$r - $w * $t) / $x;
} else {
$this->H[$i+1][$n] = (-$s - $y * $t) / $z;
}
}
// Overflow control
$t = abs($this->H[$i][$n]);
if (($eps * $t) * $t > 1) {
for ($j = $i; $j <= $n; ++$j) {
$this->H[$j][$n] = $this->H[$j][$n] / $t;
}
}
}
}
// Complex vector
} elseif ($q < 0) {
$l = $n-1;
// Last vector component imaginary so matrix is triangular
if (abs($this->H[$n][$n-1]) > abs($this->H[$n-1][$n])) {
$this->H[$n-1][$n-1] = $q / $this->H[$n][$n-1];
$this->H[$n-1][$n] = -($this->H[$n][$n] - $p) / $this->H[$n][$n-1];
} else {
$this->cdiv(0.0, -$this->H[$n-1][$n], $this->H[$n-1][$n-1] - $p, $q);
$this->H[$n-1][$n-1] = $this->cdivr;
$this->H[$n-1][$n] = $this->cdivi;
}
$this->H[$n][$n-1] = 0.0;
$this->H[$n][$n] = 1.0;
for ($i = $n-2; $i >= 0; --$i) {
// double ra,sa,vr,vi;
$ra = 0.0;
$sa = 0.0;
for ($j = $l; $j <= $n; ++$j) {
$ra = $ra + $this->H[$i][$j] * $this->H[$j][$n-1];
$sa = $sa + $this->H[$i][$j] * $this->H[$j][$n];
}
$w = $this->H[$i][$i] - $p;
if ($this->e[$i] < 0.0) {
$z = $w;
$r = $ra;
$s = $sa;
} else {
$l = $i;
if ($this->e[$i] == 0) {
$this->cdiv(-$ra, -$sa, $w, $q);
$this->H[$i][$n-1] = $this->cdivr;
$this->H[$i][$n] = $this->cdivi;
} else {
// Solve complex equations
$x = $this->H[$i][$i+1];
$y = $this->H[$i+1][$i];
$vr = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i] - $q * $q;
$vi = ($this->d[$i] - $p) * 2.0 * $q;
if ($vr == 0.0 & $vi == 0.0) {
$vr = $eps * $norm * (abs($w) + abs($q) + abs($x) + abs($y) + abs($z));
}
$this->cdiv($x * $r - $z * $ra + $q * $sa, $x * $s - $z * $sa - $q * $ra, $vr, $vi);
$this->H[$i][$n-1] = $this->cdivr;
$this->H[$i][$n] = $this->cdivi;
if (abs($x) > (abs($z) + abs($q))) {
$this->H[$i+1][$n-1] = (-$ra - $w * $this->H[$i][$n-1] + $q * $this->H[$i][$n]) / $x;
$this->H[$i+1][$n] = (-$sa - $w * $this->H[$i][$n] - $q * $this->H[$i][$n-1]) / $x;
} else {
$this->cdiv(-$r - $y * $this->H[$i][$n-1], -$s - $y * $this->H[$i][$n], $z, $q);
$this->H[$i+1][$n-1] = $this->cdivr;
$this->H[$i+1][$n] = $this->cdivi;
}
}
// Overflow control
$t = max(abs($this->H[$i][$n-1]), abs($this->H[$i][$n]));
if (($eps * $t) * $t > 1) {
for ($j = $i; $j <= $n; ++$j) {
$this->H[$j][$n-1] = $this->H[$j][$n-1] / $t;
$this->H[$j][$n] = $this->H[$j][$n] / $t;
}
}
} // end else
} // end for
} // end else for complex case
} // end for
// Vectors of isolated roots
for ($i = 0; $i < $nn; ++$i) {
if ($i < $low | $i > $high) {
for ($j = $i; $j < $nn; ++$j) {
$this->V[$i][$j] = $this->H[$i][$j];
}
}
}
// Back transformation to get eigenvectors of original matrix
for ($j = $nn-1; $j >= $low; --$j) {
for ($i = $low; $i <= $high; ++$i) {
$z = 0.0;
for ($k = $low; $k <= min($j, $high); ++$k) {
$z = $z + $this->V[$i][$k] * $this->H[$k][$j];
}
$this->V[$i][$j] = $z;
}
}
} // end hqr2
/**
* Constructor: Check for symmetry, then construct the eigenvalue decomposition
*
* @access public
* @param A Square matrix
* @return Structure to access D and V.
*/
public function __construct($Arg)
{
$this->A = $Arg->getArray();
$this->n = $Arg->getColumnDimension();
$issymmetric = true;
for ($j = 0; ($j < $this->n) & $issymmetric; ++$j) {
for ($i = 0; ($i < $this->n) & $issymmetric; ++$i) {
$issymmetric = ($this->A[$i][$j] == $this->A[$j][$i]);
}
}
if ($issymmetric) {
$this->V = $this->A;
// Tridiagonalize.
$this->tred2();
// Diagonalize.
$this->tql2();
} else {
$this->H = $this->A;
$this->ort = array();
// Reduce to Hessenberg form.
$this->orthes();
// Reduce Hessenberg to real Schur form.
$this->hqr2();
}
}
/**
* Return the eigenvector matrix
*
* @access public
* @return V
*/
public function getV()
{
return new Matrix($this->V, $this->n, $this->n);
}
/**
* Return the real parts of the eigenvalues
*
* @access public
* @return real(diag(D))
*/
public function getRealEigenvalues()
{
return $this->d;
}
/**
* Return the imaginary parts of the eigenvalues
*
* @access public
* @return imag(diag(D))
*/
public function getImagEigenvalues()
{
return $this->e;
}
/**
* Return the block diagonal eigenvalue matrix
*
* @access public
* @return D
*/
public function getD()
{
for ($i = 0; $i < $this->n; ++$i) {
$D[$i] = array_fill(0, $this->n, 0.0);
$D[$i][$i] = $this->d[$i];
if ($this->e[$i] == 0) {
continue;
}
$o = ($this->e[$i] > 0) ? $i + 1 : $i - 1;
$D[$i][$o] = $this->e[$i];
}
return new Matrix($D);
}
}