For God so loved the world, that He gave His only begotten Son, that all who believe in Him should not perish but have everlasting life
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

138 lines
4.4 KiB

  1. <?php
  2. require_once(PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php');
  3. /**
  4. * PHPExcel_Exponential_Best_Fit
  5. *
  6. * Copyright (c) 2006 - 2015 PHPExcel
  7. *
  8. * This library is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * This library is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with this library; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. * @category PHPExcel
  23. * @package PHPExcel_Shared_Trend
  24. * @copyright Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel)
  25. * @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
  26. * @version ##VERSION##, ##DATE##
  27. */
  28. class PHPExcel_Exponential_Best_Fit extends PHPExcel_Best_Fit
  29. {
  30. /**
  31. * Algorithm type to use for best-fit
  32. * (Name of this trend class)
  33. *
  34. * @var string
  35. **/
  36. protected $bestFitType = 'exponential';
  37. /**
  38. * Return the Y-Value for a specified value of X
  39. *
  40. * @param float $xValue X-Value
  41. * @return float Y-Value
  42. **/
  43. public function getValueOfYForX($xValue)
  44. {
  45. return $this->getIntersect() * pow($this->getSlope(), ($xValue - $this->xOffset));
  46. }
  47. /**
  48. * Return the X-Value for a specified value of Y
  49. *
  50. * @param float $yValue Y-Value
  51. * @return float X-Value
  52. **/
  53. public function getValueOfXForY($yValue)
  54. {
  55. return log(($yValue + $this->yOffset) / $this->getIntersect()) / log($this->getSlope());
  56. }
  57. /**
  58. * Return the Equation of the best-fit line
  59. *
  60. * @param int $dp Number of places of decimal precision to display
  61. * @return string
  62. **/
  63. public function getEquation($dp = 0)
  64. {
  65. $slope = $this->getSlope($dp);
  66. $intersect = $this->getIntersect($dp);
  67. return 'Y = ' . $intersect . ' * ' . $slope . '^X';
  68. }
  69. /**
  70. * Return the Slope of the line
  71. *
  72. * @param int $dp Number of places of decimal precision to display
  73. * @return string
  74. **/
  75. public function getSlope($dp = 0)
  76. {
  77. if ($dp != 0) {
  78. return round(exp($this->_slope), $dp);
  79. }
  80. return exp($this->_slope);
  81. }
  82. /**
  83. * Return the Value of X where it intersects Y = 0
  84. *
  85. * @param int $dp Number of places of decimal precision to display
  86. * @return string
  87. **/
  88. public function getIntersect($dp = 0)
  89. {
  90. if ($dp != 0) {
  91. return round(exp($this->intersect), $dp);
  92. }
  93. return exp($this->intersect);
  94. }
  95. /**
  96. * Execute the regression and calculate the goodness of fit for a set of X and Y data values
  97. *
  98. * @param float[] $yValues The set of Y-values for this regression
  99. * @param float[] $xValues The set of X-values for this regression
  100. * @param boolean $const
  101. */
  102. private function exponentialRegression($yValues, $xValues, $const)
  103. {
  104. foreach ($yValues as &$value) {
  105. if ($value < 0.0) {
  106. $value = 0 - log(abs($value));
  107. } elseif ($value > 0.0) {
  108. $value = log($value);
  109. }
  110. }
  111. unset($value);
  112. $this->leastSquareFit($yValues, $xValues, $const);
  113. }
  114. /**
  115. * Define the regression and calculate the goodness of fit for a set of X and Y data values
  116. *
  117. * @param float[] $yValues The set of Y-values for this regression
  118. * @param float[] $xValues The set of X-values for this regression
  119. * @param boolean $const
  120. */
  121. public function __construct($yValues, $xValues = array(), $const = true)
  122. {
  123. if (parent::__construct($yValues, $xValues) !== false) {
  124. $this->exponentialRegression($yValues, $xValues, $const);
  125. }
  126. }
  127. }