|
|
- <?php
-
- /** PHPExcel root directory */
- if (!defined('PHPEXCEL_ROOT')) {
- /**
- * @ignore
- */
- define('PHPEXCEL_ROOT', dirname(__FILE__) . '/../../');
- require(PHPEXCEL_ROOT . 'PHPExcel/Autoloader.php');
- }
-
-
- require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/trendClass.php';
-
-
- /** LOG_GAMMA_X_MAX_VALUE */
- define('LOG_GAMMA_X_MAX_VALUE', 2.55e305);
-
- /** XMININ */
- define('XMININ', 2.23e-308);
-
- /** EPS */
- define('EPS', 2.22e-16);
-
- /** SQRT2PI */
- define('SQRT2PI', 2.5066282746310005024157652848110452530069867406099);
-
- /**
- * PHPExcel_Calculation_Statistical
- *
- * Copyright (c) 2006 - 2015 PHPExcel
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * @category PHPExcel
- * @package PHPExcel_Calculation
- * @copyright Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel)
- * @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
- * @version ##VERSION##, ##DATE##
- */
- class PHPExcel_Calculation_Statistical
- {
- private static function checkTrendArrays(&$array1, &$array2)
- {
- if (!is_array($array1)) {
- $array1 = array($array1);
- }
- if (!is_array($array2)) {
- $array2 = array($array2);
- }
-
- $array1 = PHPExcel_Calculation_Functions::flattenArray($array1);
- $array2 = PHPExcel_Calculation_Functions::flattenArray($array2);
- foreach ($array1 as $key => $value) {
- if ((is_bool($value)) || (is_string($value)) || (is_null($value))) {
- unset($array1[$key]);
- unset($array2[$key]);
- }
- }
- foreach ($array2 as $key => $value) {
- if ((is_bool($value)) || (is_string($value)) || (is_null($value))) {
- unset($array1[$key]);
- unset($array2[$key]);
- }
- }
- $array1 = array_merge($array1);
- $array2 = array_merge($array2);
-
- return true;
- }
-
-
- /**
- * Beta function.
- *
- * @author Jaco van Kooten
- *
- * @param p require p>0
- * @param q require q>0
- * @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow
- */
- private static function beta($p, $q)
- {
- if ($p <= 0.0 || $q <= 0.0 || ($p + $q) > LOG_GAMMA_X_MAX_VALUE) {
- return 0.0;
- } else {
- return exp(self::logBeta($p, $q));
- }
- }
-
-
- /**
- * Incomplete beta function
- *
- * @author Jaco van Kooten
- * @author Paul Meagher
- *
- * The computation is based on formulas from Numerical Recipes, Chapter 6.4 (W.H. Press et al, 1992).
- * @param x require 0<=x<=1
- * @param p require p>0
- * @param q require q>0
- * @return 0 if x<0, p<=0, q<=0 or p+q>2.55E305 and 1 if x>1 to avoid errors and over/underflow
- */
- private static function incompleteBeta($x, $p, $q)
- {
- if ($x <= 0.0) {
- return 0.0;
- } elseif ($x >= 1.0) {
- return 1.0;
- } elseif (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) {
- return 0.0;
- }
- $beta_gam = exp((0 - self::logBeta($p, $q)) + $p * log($x) + $q * log(1.0 - $x));
- if ($x < ($p + 1.0) / ($p + $q + 2.0)) {
- return $beta_gam * self::betaFraction($x, $p, $q) / $p;
- } else {
- return 1.0 - ($beta_gam * self::betaFraction(1 - $x, $q, $p) / $q);
- }
- }
-
-
- // Function cache for logBeta function
- private static $logBetaCacheP = 0.0;
- private static $logBetaCacheQ = 0.0;
- private static $logBetaCacheResult = 0.0;
-
- /**
- * The natural logarithm of the beta function.
- *
- * @param p require p>0
- * @param q require q>0
- * @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow
- * @author Jaco van Kooten
- */
- private static function logBeta($p, $q)
- {
- if ($p != self::$logBetaCacheP || $q != self::$logBetaCacheQ) {
- self::$logBetaCacheP = $p;
- self::$logBetaCacheQ = $q;
- if (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) {
- self::$logBetaCacheResult = 0.0;
- } else {
- self::$logBetaCacheResult = self::logGamma($p) + self::logGamma($q) - self::logGamma($p + $q);
- }
- }
- return self::$logBetaCacheResult;
- }
-
-
- /**
- * Evaluates of continued fraction part of incomplete beta function.
- * Based on an idea from Numerical Recipes (W.H. Press et al, 1992).
- * @author Jaco van Kooten
- */
- private static function betaFraction($x, $p, $q)
- {
- $c = 1.0;
- $sum_pq = $p + $q;
- $p_plus = $p + 1.0;
- $p_minus = $p - 1.0;
- $h = 1.0 - $sum_pq * $x / $p_plus;
- if (abs($h) < XMININ) {
- $h = XMININ;
- }
- $h = 1.0 / $h;
- $frac = $h;
- $m = 1;
- $delta = 0.0;
- while ($m <= MAX_ITERATIONS && abs($delta-1.0) > PRECISION) {
- $m2 = 2 * $m;
- // even index for d
- $d = $m * ($q - $m) * $x / ( ($p_minus + $m2) * ($p + $m2));
- $h = 1.0 + $d * $h;
- if (abs($h) < XMININ) {
- $h = XMININ;
- }
- $h = 1.0 / $h;
- $c = 1.0 + $d / $c;
- if (abs($c) < XMININ) {
- $c = XMININ;
- }
- $frac *= $h * $c;
- // odd index for d
- $d = -($p + $m) * ($sum_pq + $m) * $x / (($p + $m2) * ($p_plus + $m2));
- $h = 1.0 + $d * $h;
- if (abs($h) < XMININ) {
- $h = XMININ;
- }
- $h = 1.0 / $h;
- $c = 1.0 + $d / $c;
- if (abs($c) < XMININ) {
- $c = XMININ;
- }
- $delta = $h * $c;
- $frac *= $delta;
- ++$m;
- }
- return $frac;
- }
-
-
- /**
- * logGamma function
- *
- * @version 1.1
- * @author Jaco van Kooten
- *
- * Original author was Jaco van Kooten. Ported to PHP by Paul Meagher.
- *
- * The natural logarithm of the gamma function. <br />
- * Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz <br />
- * Applied Mathematics Division <br />
- * Argonne National Laboratory <br />
- * Argonne, IL 60439 <br />
- * <p>
- * References:
- * <ol>
- * <li>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural
- * Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.</li>
- * <li>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.</li>
- * <li>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.</li>
- * </ol>
- * </p>
- * <p>
- * From the original documentation:
- * </p>
- * <p>
- * This routine calculates the LOG(GAMMA) function for a positive real argument X.
- * Computation is based on an algorithm outlined in references 1 and 2.
- * The program uses rational functions that theoretically approximate LOG(GAMMA)
- * to at least 18 significant decimal digits. The approximation for X > 12 is from
- * reference 3, while approximations for X < 12.0 are similar to those in reference
- * 1, but are unpublished. The accuracy achieved depends on the arithmetic system,
- * the compiler, the intrinsic functions, and proper selection of the
- * machine-dependent constants.
- * </p>
- * <p>
- * Error returns: <br />
- * The program returns the value XINF for X .LE. 0.0 or when overflow would occur.
- * The computation is believed to be free of underflow and overflow.
- * </p>
- * @return MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305
- */
-
- // Function cache for logGamma
- private static $logGammaCacheResult = 0.0;
- private static $logGammaCacheX = 0.0;
-
- private static function logGamma($x)
- {
- // Log Gamma related constants
- static $lg_d1 = -0.5772156649015328605195174;
- static $lg_d2 = 0.4227843350984671393993777;
- static $lg_d4 = 1.791759469228055000094023;
-
- static $lg_p1 = array(
- 4.945235359296727046734888,
- 201.8112620856775083915565,
- 2290.838373831346393026739,
- 11319.67205903380828685045,
- 28557.24635671635335736389,
- 38484.96228443793359990269,
- 26377.48787624195437963534,
- 7225.813979700288197698961
- );
- static $lg_p2 = array(
- 4.974607845568932035012064,
- 542.4138599891070494101986,
- 15506.93864978364947665077,
- 184793.2904445632425417223,
- 1088204.76946882876749847,
- 3338152.967987029735917223,
- 5106661.678927352456275255,
- 3074109.054850539556250927
- );
- static $lg_p4 = array(
- 14745.02166059939948905062,
- 2426813.369486704502836312,
- 121475557.4045093227939592,
- 2663432449.630976949898078,
- 29403789566.34553899906876,
- 170266573776.5398868392998,
- 492612579337.743088758812,
- 560625185622.3951465078242
- );
- static $lg_q1 = array(
- 67.48212550303777196073036,
- 1113.332393857199323513008,
- 7738.757056935398733233834,
- 27639.87074403340708898585,
- 54993.10206226157329794414,
- 61611.22180066002127833352,
- 36351.27591501940507276287,
- 8785.536302431013170870835
- );
- static $lg_q2 = array(
- 183.0328399370592604055942,
- 7765.049321445005871323047,
- 133190.3827966074194402448,
- 1136705.821321969608938755,
- 5267964.117437946917577538,
- 13467014.54311101692290052,
- 17827365.30353274213975932,
- 9533095.591844353613395747
- );
- static $lg_q4 = array(
- 2690.530175870899333379843,
- 639388.5654300092398984238,
- 41355999.30241388052042842,
- 1120872109.61614794137657,
- 14886137286.78813811542398,
- 101680358627.2438228077304,
- 341747634550.7377132798597,
- 446315818741.9713286462081
- );
- static $lg_c = array(
- -0.001910444077728,
- 8.4171387781295e-4,
- -5.952379913043012e-4,
- 7.93650793500350248e-4,
- -0.002777777777777681622553,
- 0.08333333333333333331554247,
- 0.0057083835261
- );
-
- // Rough estimate of the fourth root of logGamma_xBig
- static $lg_frtbig = 2.25e76;
- static $pnt68 = 0.6796875;
-
-
- if ($x == self::$logGammaCacheX) {
- return self::$logGammaCacheResult;
- }
- $y = $x;
- if ($y > 0.0 && $y <= LOG_GAMMA_X_MAX_VALUE) {
- if ($y <= EPS) {
- $res = -log(y);
- } elseif ($y <= 1.5) {
- // ---------------------
- // EPS .LT. X .LE. 1.5
- // ---------------------
- if ($y < $pnt68) {
- $corr = -log($y);
- $xm1 = $y;
- } else {
- $corr = 0.0;
- $xm1 = $y - 1.0;
- }
- if ($y <= 0.5 || $y >= $pnt68) {
- $xden = 1.0;
- $xnum = 0.0;
- for ($i = 0; $i < 8; ++$i) {
- $xnum = $xnum * $xm1 + $lg_p1[$i];
- $xden = $xden * $xm1 + $lg_q1[$i];
- }
- $res = $corr + $xm1 * ($lg_d1 + $xm1 * ($xnum / $xden));
- } else {
- $xm2 = $y - 1.0;
- $xden = 1.0;
- $xnum = 0.0;
- for ($i = 0; $i < 8; ++$i) {
- $xnum = $xnum * $xm2 + $lg_p2[$i];
- $xden = $xden * $xm2 + $lg_q2[$i];
- }
- $res = $corr + $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));
- }
- } elseif ($y <= 4.0) {
- // ---------------------
- // 1.5 .LT. X .LE. 4.0
- // ---------------------
- $xm2 = $y - 2.0;
- $xden = 1.0;
- $xnum = 0.0;
- for ($i = 0; $i < 8; ++$i) {
- $xnum = $xnum * $xm2 + $lg_p2[$i];
- $xden = $xden * $xm2 + $lg_q2[$i];
- }
- $res = $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));
- } elseif ($y <= 12.0) {
- // ----------------------
- // 4.0 .LT. X .LE. 12.0
- // ----------------------
- $xm4 = $y - 4.0;
- $xden = -1.0;
- $xnum = 0.0;
- for ($i = 0; $i < 8; ++$i) {
- $xnum = $xnum * $xm4 + $lg_p4[$i];
- $xden = $xden * $xm4 + $lg_q4[$i];
- }
- $res = $lg_d4 + $xm4 * ($xnum / $xden);
- } else {
- // ---------------------------------
- // Evaluate for argument .GE. 12.0
- // ---------------------------------
- $res = 0.0;
- if ($y <= $lg_frtbig) {
- $res = $lg_c[6];
- $ysq = $y * $y;
- for ($i = 0; $i < 6; ++$i) {
- $res = $res / $ysq + $lg_c[$i];
- }
- $res /= $y;
- $corr = log($y);
- $res = $res + log(SQRT2PI) - 0.5 * $corr;
- $res += $y * ($corr - 1.0);
- }
- }
- } else {
- // --------------------------
- // Return for bad arguments
- // --------------------------
- $res = MAX_VALUE;
- }
- // ------------------------------
- // Final adjustments and return
- // ------------------------------
- self::$logGammaCacheX = $x;
- self::$logGammaCacheResult = $res;
- return $res;
- }
-
-
- //
- // Private implementation of the incomplete Gamma function
- //
- private static function incompleteGamma($a, $x)
- {
- static $max = 32;
- $summer = 0;
- for ($n=0; $n<=$max; ++$n) {
- $divisor = $a;
- for ($i=1; $i<=$n; ++$i) {
- $divisor *= ($a + $i);
- }
- $summer += (pow($x, $n) / $divisor);
- }
- return pow($x, $a) * exp(0-$x) * $summer;
- }
-
-
- //
- // Private implementation of the Gamma function
- //
- private static function gamma($data)
- {
- if ($data == 0.0) {
- return 0;
- }
-
- static $p0 = 1.000000000190015;
- static $p = array(
- 1 => 76.18009172947146,
- 2 => -86.50532032941677,
- 3 => 24.01409824083091,
- 4 => -1.231739572450155,
- 5 => 1.208650973866179e-3,
- 6 => -5.395239384953e-6
- );
-
- $y = $x = $data;
- $tmp = $x + 5.5;
- $tmp -= ($x + 0.5) * log($tmp);
-
- $summer = $p0;
- for ($j=1; $j<=6; ++$j) {
- $summer += ($p[$j] / ++$y);
- }
- return exp(0 - $tmp + log(SQRT2PI * $summer / $x));
- }
-
-
- /***************************************************************************
- * inverse_ncdf.php
- * -------------------
- * begin : Friday, January 16, 2004
- * copyright : (C) 2004 Michael Nickerson
- * email : nickersonm@yahoo.com
- *
- ***************************************************************************/
- private static function inverseNcdf($p)
- {
- // Inverse ncdf approximation by Peter J. Acklam, implementation adapted to
- // PHP by Michael Nickerson, using Dr. Thomas Ziegler's C implementation as
- // a guide. http://home.online.no/~pjacklam/notes/invnorm/index.html
- // I have not checked the accuracy of this implementation. Be aware that PHP
- // will truncate the coeficcients to 14 digits.
-
- // You have permission to use and distribute this function freely for
- // whatever purpose you want, but please show common courtesy and give credit
- // where credit is due.
-
- // Input paramater is $p - probability - where 0 < p < 1.
-
- // Coefficients in rational approximations
- static $a = array(
- 1 => -3.969683028665376e+01,
- 2 => 2.209460984245205e+02,
- 3 => -2.759285104469687e+02,
- 4 => 1.383577518672690e+02,
- 5 => -3.066479806614716e+01,
- 6 => 2.506628277459239e+00
- );
-
- static $b = array(
- 1 => -5.447609879822406e+01,
- 2 => 1.615858368580409e+02,
- 3 => -1.556989798598866e+02,
- 4 => 6.680131188771972e+01,
- 5 => -1.328068155288572e+01
- );
-
- static $c = array(
- 1 => -7.784894002430293e-03,
- 2 => -3.223964580411365e-01,
- 3 => -2.400758277161838e+00,
- 4 => -2.549732539343734e+00,
- 5 => 4.374664141464968e+00,
- 6 => 2.938163982698783e+00
- );
-
- static $d = array(
- 1 => 7.784695709041462e-03,
- 2 => 3.224671290700398e-01,
- 3 => 2.445134137142996e+00,
- 4 => 3.754408661907416e+00
- );
-
- // Define lower and upper region break-points.
- $p_low = 0.02425; //Use lower region approx. below this
- $p_high = 1 - $p_low; //Use upper region approx. above this
-
- if (0 < $p && $p < $p_low) {
- // Rational approximation for lower region.
- $q = sqrt(-2 * log($p));
- return ((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /
- (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);
- } elseif ($p_low <= $p && $p <= $p_high) {
- // Rational approximation for central region.
- $q = $p - 0.5;
- $r = $q * $q;
- return ((((($a[1] * $r + $a[2]) * $r + $a[3]) * $r + $a[4]) * $r + $a[5]) * $r + $a[6]) * $q /
- ((((($b[1] * $r + $b[2]) * $r + $b[3]) * $r + $b[4]) * $r + $b[5]) * $r + 1);
- } elseif ($p_high < $p && $p < 1) {
- // Rational approximation for upper region.
- $q = sqrt(-2 * log(1 - $p));
- return -((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /
- (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);
- }
- // If 0 < p < 1, return a null value
- return PHPExcel_Calculation_Functions::NULL();
- }
-
-
- private static function inverseNcdf2($prob)
- {
- // Approximation of inverse standard normal CDF developed by
- // B. Moro, "The Full Monte," Risk 8(2), Feb 1995, 57-58.
-
- $a1 = 2.50662823884;
- $a2 = -18.61500062529;
- $a3 = 41.39119773534;
- $a4 = -25.44106049637;
-
- $b1 = -8.4735109309;
- $b2 = 23.08336743743;
- $b3 = -21.06224101826;
- $b4 = 3.13082909833;
-
- $c1 = 0.337475482272615;
- $c2 = 0.976169019091719;
- $c3 = 0.160797971491821;
- $c4 = 2.76438810333863E-02;
- $c5 = 3.8405729373609E-03;
- $c6 = 3.951896511919E-04;
- $c7 = 3.21767881768E-05;
- $c8 = 2.888167364E-07;
- $c9 = 3.960315187E-07;
-
- $y = $prob - 0.5;
- if (abs($y) < 0.42) {
- $z = ($y * $y);
- $z = $y * ((($a4 * $z + $a3) * $z + $a2) * $z + $a1) / (((($b4 * $z + $b3) * $z + $b2) * $z + $b1) * $z + 1);
- } else {
- if ($y > 0) {
- $z = log(-log(1 - $prob));
- } else {
- $z = log(-log($prob));
- }
- $z = $c1 + $z * ($c2 + $z * ($c3 + $z * ($c4 + $z * ($c5 + $z * ($c6 + $z * ($c7 + $z * ($c8 + $z * $c9)))))));
- if ($y < 0) {
- $z = -$z;
- }
- }
- return $z;
- } // function inverseNcdf2()
-
-
- private static function inverseNcdf3($p)
- {
- // ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3.
- // Produces the normal deviate Z corresponding to a given lower
- // tail area of P; Z is accurate to about 1 part in 10**16.
- //
- // This is a PHP version of the original FORTRAN code that can
- // be found at http://lib.stat.cmu.edu/apstat/
- $split1 = 0.425;
- $split2 = 5;
- $const1 = 0.180625;
- $const2 = 1.6;
-
- // coefficients for p close to 0.5
- $a0 = 3.3871328727963666080;
- $a1 = 1.3314166789178437745E+2;
- $a2 = 1.9715909503065514427E+3;
- $a3 = 1.3731693765509461125E+4;
- $a4 = 4.5921953931549871457E+4;
- $a5 = 6.7265770927008700853E+4;
- $a6 = 3.3430575583588128105E+4;
- $a7 = 2.5090809287301226727E+3;
-
- $b1 = 4.2313330701600911252E+1;
- $b2 = 6.8718700749205790830E+2;
- $b3 = 5.3941960214247511077E+3;
- $b4 = 2.1213794301586595867E+4;
- $b5 = 3.9307895800092710610E+4;
- $b6 = 2.8729085735721942674E+4;
- $b7 = 5.2264952788528545610E+3;
-
- // coefficients for p not close to 0, 0.5 or 1.
- $c0 = 1.42343711074968357734;
- $c1 = 4.63033784615654529590;
- $c2 = 5.76949722146069140550;
- $c3 = 3.64784832476320460504;
- $c4 = 1.27045825245236838258;
- $c5 = 2.41780725177450611770E-1;
- $c6 = 2.27238449892691845833E-2;
- $c7 = 7.74545014278341407640E-4;
-
- $d1 = 2.05319162663775882187;
- $d2 = 1.67638483018380384940;
- $d3 = 6.89767334985100004550E-1;
- $d4 = 1.48103976427480074590E-1;
- $d5 = 1.51986665636164571966E-2;
- $d6 = 5.47593808499534494600E-4;
- $d7 = 1.05075007164441684324E-9;
-
- // coefficients for p near 0 or 1.
- $e0 = 6.65790464350110377720;
- $e1 = 5.46378491116411436990;
- $e2 = 1.78482653991729133580;
- $e3 = 2.96560571828504891230E-1;
- $e4 = 2.65321895265761230930E-2;
- $e5 = 1.24266094738807843860E-3;
- $e6 = 2.71155556874348757815E-5;
- $e7 = 2.01033439929228813265E-7;
-
- $f1 = 5.99832206555887937690E-1;
- $f2 = 1.36929880922735805310E-1;
- $f3 = 1.48753612908506148525E-2;
- $f4 = 7.86869131145613259100E-4;
- $f5 = 1.84631831751005468180E-5;
- $f6 = 1.42151175831644588870E-7;
- $f7 = 2.04426310338993978564E-15;
-
- $q = $p - 0.5;
-
- // computation for p close to 0.5
- if (abs($q) <= split1) {
- $R = $const1 - $q * $q;
- $z = $q * ((((((($a7 * $R + $a6) * $R + $a5) * $R + $a4) * $R + $a3) * $R + $a2) * $R + $a1) * $R + $a0) /
- ((((((($b7 * $R + $b6) * $R + $b5) * $R + $b4) * $R + $b3) * $R + $b2) * $R + $b1) * $R + 1);
- } else {
- if ($q < 0) {
- $R = $p;
- } else {
- $R = 1 - $p;
- }
- $R = pow(-log($R), 2);
-
- // computation for p not close to 0, 0.5 or 1.
- if ($R <= $split2) {
- $R = $R - $const2;
- $z = ((((((($c7 * $R + $c6) * $R + $c5) * $R + $c4) * $R + $c3) * $R + $c2) * $R + $c1) * $R + $c0) /
- ((((((($d7 * $R + $d6) * $R + $d5) * $R + $d4) * $R + $d3) * $R + $d2) * $R + $d1) * $R + 1);
- } else {
- // computation for p near 0 or 1.
- $R = $R - $split2;
- $z = ((((((($e7 * $R + $e6) * $R + $e5) * $R + $e4) * $R + $e3) * $R + $e2) * $R + $e1) * $R + $e0) /
- ((((((($f7 * $R + $f6) * $R + $f5) * $R + $f4) * $R + $f3) * $R + $f2) * $R + $f1) * $R + 1);
- }
- if ($q < 0) {
- $z = -$z;
- }
- }
- return $z;
- }
-
-
- /**
- * AVEDEV
- *
- * Returns the average of the absolute deviations of data points from their mean.
- * AVEDEV is a measure of the variability in a data set.
- *
- * Excel Function:
- * AVEDEV(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function AVEDEV()
- {
- $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
-
- // Return value
- $returnValue = null;
-
- $aMean = self::AVERAGE($aArgs);
- if ($aMean != PHPExcel_Calculation_Functions::DIV0()) {
- $aCount = 0;
- foreach ($aArgs as $k => $arg) {
- if ((is_bool($arg)) &&
- ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
- $arg = (integer) $arg;
- }
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- if (is_null($returnValue)) {
- $returnValue = abs($arg - $aMean);
- } else {
- $returnValue += abs($arg - $aMean);
- }
- ++$aCount;
- }
- }
-
- // Return
- if ($aCount == 0) {
- return PHPExcel_Calculation_Functions::DIV0();
- }
- return $returnValue / $aCount;
- }
- return PHPExcel_Calculation_Functions::NaN();
- }
-
-
- /**
- * AVERAGE
- *
- * Returns the average (arithmetic mean) of the arguments
- *
- * Excel Function:
- * AVERAGE(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function AVERAGE()
- {
- $returnValue = $aCount = 0;
-
- // Loop through arguments
- foreach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) {
- if ((is_bool($arg)) &&
- ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
- $arg = (integer) $arg;
- }
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- if (is_null($returnValue)) {
- $returnValue = $arg;
- } else {
- $returnValue += $arg;
- }
- ++$aCount;
- }
- }
-
- // Return
- if ($aCount > 0) {
- return $returnValue / $aCount;
- } else {
- return PHPExcel_Calculation_Functions::DIV0();
- }
- }
-
-
- /**
- * AVERAGEA
- *
- * Returns the average of its arguments, including numbers, text, and logical values
- *
- * Excel Function:
- * AVERAGEA(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function AVERAGEA()
- {
- $returnValue = null;
-
- $aCount = 0;
- // Loop through arguments
- foreach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) {
- if ((is_bool($arg)) &&
- (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
- } else {
- if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
- if (is_bool($arg)) {
- $arg = (integer) $arg;
- } elseif (is_string($arg)) {
- $arg = 0;
- }
- if (is_null($returnValue)) {
- $returnValue = $arg;
- } else {
- $returnValue += $arg;
- }
- ++$aCount;
- }
- }
- }
-
- if ($aCount > 0) {
- return $returnValue / $aCount;
- } else {
- return PHPExcel_Calculation_Functions::DIV0();
- }
- }
-
-
- /**
- * AVERAGEIF
- *
- * Returns the average value from a range of cells that contain numbers within the list of arguments
- *
- * Excel Function:
- * AVERAGEIF(value1[,value2[, ...]],condition)
- *
- * @access public
- * @category Mathematical and Trigonometric Functions
- * @param mixed $arg,... Data values
- * @param string $condition The criteria that defines which cells will be checked.
- * @param mixed[] $averageArgs Data values
- * @return float
- */
- public static function AVERAGEIF($aArgs, $condition, $averageArgs = array())
- {
- $returnValue = 0;
-
- $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);
- $averageArgs = PHPExcel_Calculation_Functions::flattenArray($averageArgs);
- if (empty($averageArgs)) {
- $averageArgs = $aArgs;
- }
- $condition = PHPExcel_Calculation_Functions::ifCondition($condition);
- // Loop through arguments
- $aCount = 0;
- foreach ($aArgs as $key => $arg) {
- if (!is_numeric($arg)) {
- $arg = PHPExcel_Calculation::wrapResult(strtoupper($arg));
- }
- $testCondition = '='.$arg.$condition;
- if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
- if ((is_null($returnValue)) || ($arg > $returnValue)) {
- $returnValue += $arg;
- ++$aCount;
- }
- }
- }
-
- if ($aCount > 0) {
- return $returnValue / $aCount;
- }
- return PHPExcel_Calculation_Functions::DIV0();
- }
-
-
- /**
- * BETADIST
- *
- * Returns the beta distribution.
- *
- * @param float $value Value at which you want to evaluate the distribution
- * @param float $alpha Parameter to the distribution
- * @param float $beta Parameter to the distribution
- * @param boolean $cumulative
- * @return float
- *
- */
- public static function BETADIST($value, $alpha, $beta, $rMin = 0, $rMax = 1)
- {
- $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
- $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
- $beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta);
- $rMin = PHPExcel_Calculation_Functions::flattenSingleValue($rMin);
- $rMax = PHPExcel_Calculation_Functions::flattenSingleValue($rMax);
-
- if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {
- if (($value < $rMin) || ($value > $rMax) || ($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- if ($rMin > $rMax) {
- $tmp = $rMin;
- $rMin = $rMax;
- $rMax = $tmp;
- }
- $value -= $rMin;
- $value /= ($rMax - $rMin);
- return self::incompleteBeta($value, $alpha, $beta);
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * BETAINV
- *
- * Returns the inverse of the beta distribution.
- *
- * @param float $probability Probability at which you want to evaluate the distribution
- * @param float $alpha Parameter to the distribution
- * @param float $beta Parameter to the distribution
- * @param float $rMin Minimum value
- * @param float $rMax Maximum value
- * @param boolean $cumulative
- * @return float
- *
- */
- public static function BETAINV($probability, $alpha, $beta, $rMin = 0, $rMax = 1)
- {
- $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
- $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
- $beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta);
- $rMin = PHPExcel_Calculation_Functions::flattenSingleValue($rMin);
- $rMax = PHPExcel_Calculation_Functions::flattenSingleValue($rMax);
-
- if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {
- if (($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax) || ($probability <= 0) || ($probability > 1)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- if ($rMin > $rMax) {
- $tmp = $rMin;
- $rMin = $rMax;
- $rMax = $tmp;
- }
- $a = 0;
- $b = 2;
-
- $i = 0;
- while ((($b - $a) > PRECISION) && ($i++ < MAX_ITERATIONS)) {
- $guess = ($a + $b) / 2;
- $result = self::BETADIST($guess, $alpha, $beta);
- if (($result == $probability) || ($result == 0)) {
- $b = $a;
- } elseif ($result > $probability) {
- $b = $guess;
- } else {
- $a = $guess;
- }
- }
- if ($i == MAX_ITERATIONS) {
- return PHPExcel_Calculation_Functions::NA();
- }
- return round($rMin + $guess * ($rMax - $rMin), 12);
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * BINOMDIST
- *
- * Returns the individual term binomial distribution probability. Use BINOMDIST in problems with
- * a fixed number of tests or trials, when the outcomes of any trial are only success or failure,
- * when trials are independent, and when the probability of success is constant throughout the
- * experiment. For example, BINOMDIST can calculate the probability that two of the next three
- * babies born are male.
- *
- * @param float $value Number of successes in trials
- * @param float $trials Number of trials
- * @param float $probability Probability of success on each trial
- * @param boolean $cumulative
- * @return float
- *
- * @todo Cumulative distribution function
- *
- */
- public static function BINOMDIST($value, $trials, $probability, $cumulative)
- {
- $value = floor(PHPExcel_Calculation_Functions::flattenSingleValue($value));
- $trials = floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials));
- $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
-
- if ((is_numeric($value)) && (is_numeric($trials)) && (is_numeric($probability))) {
- if (($value < 0) || ($value > $trials)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- if (($probability < 0) || ($probability > 1)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
- if ($cumulative) {
- $summer = 0;
- for ($i = 0; $i <= $value; ++$i) {
- $summer += PHPExcel_Calculation_MathTrig::COMBIN($trials, $i) * pow($probability, $i) * pow(1 - $probability, $trials - $i);
- }
- return $summer;
- } else {
- return PHPExcel_Calculation_MathTrig::COMBIN($trials, $value) * pow($probability, $value) * pow(1 - $probability, $trials - $value) ;
- }
- }
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * CHIDIST
- *
- * Returns the one-tailed probability of the chi-squared distribution.
- *
- * @param float $value Value for the function
- * @param float $degrees degrees of freedom
- * @return float
- */
- public static function CHIDIST($value, $degrees)
- {
- $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
- $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));
-
- if ((is_numeric($value)) && (is_numeric($degrees))) {
- if ($degrees < 1) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- if ($value < 0) {
- if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) {
- return 1;
- }
- return PHPExcel_Calculation_Functions::NaN();
- }
- return 1 - (self::incompleteGamma($degrees/2, $value/2) / self::gamma($degrees/2));
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * CHIINV
- *
- * Returns the one-tailed probability of the chi-squared distribution.
- *
- * @param float $probability Probability for the function
- * @param float $degrees degrees of freedom
- * @return float
- */
- public static function CHIINV($probability, $degrees)
- {
- $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
- $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));
-
- if ((is_numeric($probability)) && (is_numeric($degrees))) {
- $xLo = 100;
- $xHi = 0;
-
- $x = $xNew = 1;
- $dx = 1;
- $i = 0;
-
- while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {
- // Apply Newton-Raphson step
- $result = self::CHIDIST($x, $degrees);
- $error = $result - $probability;
- if ($error == 0.0) {
- $dx = 0;
- } elseif ($error < 0.0) {
- $xLo = $x;
- } else {
- $xHi = $x;
- }
- // Avoid division by zero
- if ($result != 0.0) {
- $dx = $error / $result;
- $xNew = $x - $dx;
- }
- // If the NR fails to converge (which for example may be the
- // case if the initial guess is too rough) we apply a bisection
- // step to determine a more narrow interval around the root.
- if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {
- $xNew = ($xLo + $xHi) / 2;
- $dx = $xNew - $x;
- }
- $x = $xNew;
- }
- if ($i == MAX_ITERATIONS) {
- return PHPExcel_Calculation_Functions::NA();
- }
- return round($x, 12);
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * CONFIDENCE
- *
- * Returns the confidence interval for a population mean
- *
- * @param float $alpha
- * @param float $stdDev Standard Deviation
- * @param float $size
- * @return float
- *
- */
- public static function CONFIDENCE($alpha, $stdDev, $size)
- {
- $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
- $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
- $size = floor(PHPExcel_Calculation_Functions::flattenSingleValue($size));
-
- if ((is_numeric($alpha)) && (is_numeric($stdDev)) && (is_numeric($size))) {
- if (($alpha <= 0) || ($alpha >= 1)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- if (($stdDev <= 0) || ($size < 1)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- return self::NORMSINV(1 - $alpha / 2) * $stdDev / sqrt($size);
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * CORREL
- *
- * Returns covariance, the average of the products of deviations for each data point pair.
- *
- * @param array of mixed Data Series Y
- * @param array of mixed Data Series X
- * @return float
- */
- public static function CORREL($yValues, $xValues = null)
- {
- if ((is_null($xValues)) || (!is_array($yValues)) || (!is_array($xValues))) {
- return PHPExcel_Calculation_Functions::VALUE();
- }
- if (!self::checkTrendArrays($yValues, $xValues)) {
- return PHPExcel_Calculation_Functions::VALUE();
- }
- $yValueCount = count($yValues);
- $xValueCount = count($xValues);
-
- if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
- return PHPExcel_Calculation_Functions::NA();
- } elseif ($yValueCount == 1) {
- return PHPExcel_Calculation_Functions::DIV0();
- }
-
- $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
- return $bestFitLinear->getCorrelation();
- }
-
-
- /**
- * COUNT
- *
- * Counts the number of cells that contain numbers within the list of arguments
- *
- * Excel Function:
- * COUNT(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return int
- */
- public static function COUNT()
- {
- $returnValue = 0;
-
- // Loop through arguments
- $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
- foreach ($aArgs as $k => $arg) {
- if ((is_bool($arg)) &&
- ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
- $arg = (integer) $arg;
- }
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- ++$returnValue;
- }
- }
-
- return $returnValue;
- }
-
-
- /**
- * COUNTA
- *
- * Counts the number of cells that are not empty within the list of arguments
- *
- * Excel Function:
- * COUNTA(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return int
- */
- public static function COUNTA()
- {
- $returnValue = 0;
-
- // Loop through arguments
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
- foreach ($aArgs as $arg) {
- // Is it a numeric, boolean or string value?
- if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
- ++$returnValue;
- }
- }
-
- return $returnValue;
- }
-
-
- /**
- * COUNTBLANK
- *
- * Counts the number of empty cells within the list of arguments
- *
- * Excel Function:
- * COUNTBLANK(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return int
- */
- public static function COUNTBLANK()
- {
- $returnValue = 0;
-
- // Loop through arguments
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
- foreach ($aArgs as $arg) {
- // Is it a blank cell?
- if ((is_null($arg)) || ((is_string($arg)) && ($arg == ''))) {
- ++$returnValue;
- }
- }
-
- return $returnValue;
- }
-
-
- /**
- * COUNTIF
- *
- * Counts the number of cells that contain numbers within the list of arguments
- *
- * Excel Function:
- * COUNTIF(value1[,value2[, ...]],condition)
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @param string $condition The criteria that defines which cells will be counted.
- * @return int
- */
- public static function COUNTIF($aArgs, $condition)
- {
- $returnValue = 0;
-
- $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);
- $condition = PHPExcel_Calculation_Functions::ifCondition($condition);
- // Loop through arguments
- foreach ($aArgs as $arg) {
- if (!is_numeric($arg)) {
- $arg = PHPExcel_Calculation::wrapResult(strtoupper($arg));
- }
- $testCondition = '='.$arg.$condition;
- if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
- // Is it a value within our criteria
- ++$returnValue;
- }
- }
-
- return $returnValue;
- }
-
-
- /**
- * COVAR
- *
- * Returns covariance, the average of the products of deviations for each data point pair.
- *
- * @param array of mixed Data Series Y
- * @param array of mixed Data Series X
- * @return float
- */
- public static function COVAR($yValues, $xValues)
- {
- if (!self::checkTrendArrays($yValues, $xValues)) {
- return PHPExcel_Calculation_Functions::VALUE();
- }
- $yValueCount = count($yValues);
- $xValueCount = count($xValues);
-
- if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
- return PHPExcel_Calculation_Functions::NA();
- } elseif ($yValueCount == 1) {
- return PHPExcel_Calculation_Functions::DIV0();
- }
-
- $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
- return $bestFitLinear->getCovariance();
- }
-
-
- /**
- * CRITBINOM
- *
- * Returns the smallest value for which the cumulative binomial distribution is greater
- * than or equal to a criterion value
- *
- * See http://support.microsoft.com/kb/828117/ for details of the algorithm used
- *
- * @param float $trials number of Bernoulli trials
- * @param float $probability probability of a success on each trial
- * @param float $alpha criterion value
- * @return int
- *
- * @todo Warning. This implementation differs from the algorithm detailed on the MS
- * web site in that $CumPGuessMinus1 = $CumPGuess - 1 rather than $CumPGuess - $PGuess
- * This eliminates a potential endless loop error, but may have an adverse affect on the
- * accuracy of the function (although all my tests have so far returned correct results).
- *
- */
- public static function CRITBINOM($trials, $probability, $alpha)
- {
- $trials = floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials));
- $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
- $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
-
- if ((is_numeric($trials)) && (is_numeric($probability)) && (is_numeric($alpha))) {
- if ($trials < 0) {
- return PHPExcel_Calculation_Functions::NaN();
- } elseif (($probability < 0) || ($probability > 1)) {
- return PHPExcel_Calculation_Functions::NaN();
- } elseif (($alpha < 0) || ($alpha > 1)) {
- return PHPExcel_Calculation_Functions::NaN();
- } elseif ($alpha <= 0.5) {
- $t = sqrt(log(1 / ($alpha * $alpha)));
- $trialsApprox = 0 - ($t + (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t));
- } else {
- $t = sqrt(log(1 / pow(1 - $alpha, 2)));
- $trialsApprox = $t - (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t);
- }
- $Guess = floor($trials * $probability + $trialsApprox * sqrt($trials * $probability * (1 - $probability)));
- if ($Guess < 0) {
- $Guess = 0;
- } elseif ($Guess > $trials) {
- $Guess = $trials;
- }
-
- $TotalUnscaledProbability = $UnscaledPGuess = $UnscaledCumPGuess = 0.0;
- $EssentiallyZero = 10e-12;
-
- $m = floor($trials * $probability);
- ++$TotalUnscaledProbability;
- if ($m == $Guess) {
- ++$UnscaledPGuess;
- }
- if ($m <= $Guess) {
- ++$UnscaledCumPGuess;
- }
-
- $PreviousValue = 1;
- $Done = false;
- $k = $m + 1;
- while ((!$Done) && ($k <= $trials)) {
- $CurrentValue = $PreviousValue * ($trials - $k + 1) * $probability / ($k * (1 - $probability));
- $TotalUnscaledProbability += $CurrentValue;
- if ($k == $Guess) {
- $UnscaledPGuess += $CurrentValue;
- }
- if ($k <= $Guess) {
- $UnscaledCumPGuess += $CurrentValue;
- }
- if ($CurrentValue <= $EssentiallyZero) {
- $Done = true;
- }
- $PreviousValue = $CurrentValue;
- ++$k;
- }
-
- $PreviousValue = 1;
- $Done = false;
- $k = $m - 1;
- while ((!$Done) && ($k >= 0)) {
- $CurrentValue = $PreviousValue * $k + 1 * (1 - $probability) / (($trials - $k) * $probability);
- $TotalUnscaledProbability += $CurrentValue;
- if ($k == $Guess) {
- $UnscaledPGuess += $CurrentValue;
- }
- if ($k <= $Guess) {
- $UnscaledCumPGuess += $CurrentValue;
- }
- if ($CurrentValue <= $EssentiallyZero) {
- $Done = true;
- }
- $PreviousValue = $CurrentValue;
- --$k;
- }
-
- $PGuess = $UnscaledPGuess / $TotalUnscaledProbability;
- $CumPGuess = $UnscaledCumPGuess / $TotalUnscaledProbability;
-
- // $CumPGuessMinus1 = $CumPGuess - $PGuess;
- $CumPGuessMinus1 = $CumPGuess - 1;
-
- while (true) {
- if (($CumPGuessMinus1 < $alpha) && ($CumPGuess >= $alpha)) {
- return $Guess;
- } elseif (($CumPGuessMinus1 < $alpha) && ($CumPGuess < $alpha)) {
- $PGuessPlus1 = $PGuess * ($trials - $Guess) * $probability / $Guess / (1 - $probability);
- $CumPGuessMinus1 = $CumPGuess;
- $CumPGuess = $CumPGuess + $PGuessPlus1;
- $PGuess = $PGuessPlus1;
- ++$Guess;
- } elseif (($CumPGuessMinus1 >= $alpha) && ($CumPGuess >= $alpha)) {
- $PGuessMinus1 = $PGuess * $Guess * (1 - $probability) / ($trials - $Guess + 1) / $probability;
- $CumPGuess = $CumPGuessMinus1;
- $CumPGuessMinus1 = $CumPGuessMinus1 - $PGuess;
- $PGuess = $PGuessMinus1;
- --$Guess;
- }
- }
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * DEVSQ
- *
- * Returns the sum of squares of deviations of data points from their sample mean.
- *
- * Excel Function:
- * DEVSQ(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function DEVSQ()
- {
- $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
-
- // Return value
- $returnValue = null;
-
- $aMean = self::AVERAGE($aArgs);
- if ($aMean != PHPExcel_Calculation_Functions::DIV0()) {
- $aCount = -1;
- foreach ($aArgs as $k => $arg) {
- // Is it a numeric value?
- if ((is_bool($arg)) &&
- ((!PHPExcel_Calculation_Functions::isCellValue($k)) ||
- (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
- $arg = (integer) $arg;
- }
- if ((is_numeric($arg)) && (!is_string($arg))) {
- if (is_null($returnValue)) {
- $returnValue = pow(($arg - $aMean), 2);
- } else {
- $returnValue += pow(($arg - $aMean), 2);
- }
- ++$aCount;
- }
- }
-
- // Return
- if (is_null($returnValue)) {
- return PHPExcel_Calculation_Functions::NaN();
- } else {
- return $returnValue;
- }
- }
- return self::NA();
- }
-
-
- /**
- * EXPONDIST
- *
- * Returns the exponential distribution. Use EXPONDIST to model the time between events,
- * such as how long an automated bank teller takes to deliver cash. For example, you can
- * use EXPONDIST to determine the probability that the process takes at most 1 minute.
- *
- * @param float $value Value of the function
- * @param float $lambda The parameter value
- * @param boolean $cumulative
- * @return float
- */
- public static function EXPONDIST($value, $lambda, $cumulative)
- {
- $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
- $lambda = PHPExcel_Calculation_Functions::flattenSingleValue($lambda);
- $cumulative = PHPExcel_Calculation_Functions::flattenSingleValue($cumulative);
-
- if ((is_numeric($value)) && (is_numeric($lambda))) {
- if (($value < 0) || ($lambda < 0)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
- if ($cumulative) {
- return 1 - exp(0-$value*$lambda);
- } else {
- return $lambda * exp(0-$value*$lambda);
- }
- }
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * FISHER
- *
- * Returns the Fisher transformation at x. This transformation produces a function that
- * is normally distributed rather than skewed. Use this function to perform hypothesis
- * testing on the correlation coefficient.
- *
- * @param float $value
- * @return float
- */
- public static function FISHER($value)
- {
- $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
-
- if (is_numeric($value)) {
- if (($value <= -1) || ($value >= 1)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- return 0.5 * log((1+$value)/(1-$value));
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * FISHERINV
- *
- * Returns the inverse of the Fisher transformation. Use this transformation when
- * analyzing correlations between ranges or arrays of data. If y = FISHER(x), then
- * FISHERINV(y) = x.
- *
- * @param float $value
- * @return float
- */
- public static function FISHERINV($value)
- {
- $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
-
- if (is_numeric($value)) {
- return (exp(2 * $value) - 1) / (exp(2 * $value) + 1);
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * FORECAST
- *
- * Calculates, or predicts, a future value by using existing values. The predicted value is a y-value for a given x-value.
- *
- * @param float Value of X for which we want to find Y
- * @param array of mixed Data Series Y
- * @param array of mixed Data Series X
- * @return float
- */
- public static function FORECAST($xValue, $yValues, $xValues)
- {
- $xValue = PHPExcel_Calculation_Functions::flattenSingleValue($xValue);
- if (!is_numeric($xValue)) {
- return PHPExcel_Calculation_Functions::VALUE();
- } elseif (!self::checkTrendArrays($yValues, $xValues)) {
- return PHPExcel_Calculation_Functions::VALUE();
- }
- $yValueCount = count($yValues);
- $xValueCount = count($xValues);
-
- if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
- return PHPExcel_Calculation_Functions::NA();
- } elseif ($yValueCount == 1) {
- return PHPExcel_Calculation_Functions::DIV0();
- }
-
- $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
- return $bestFitLinear->getValueOfYForX($xValue);
- }
-
-
- /**
- * GAMMADIST
- *
- * Returns the gamma distribution.
- *
- * @param float $value Value at which you want to evaluate the distribution
- * @param float $a Parameter to the distribution
- * @param float $b Parameter to the distribution
- * @param boolean $cumulative
- * @return float
- *
- */
- public static function GAMMADIST($value, $a, $b, $cumulative)
- {
- $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
- $a = PHPExcel_Calculation_Functions::flattenSingleValue($a);
- $b = PHPExcel_Calculation_Functions::flattenSingleValue($b);
-
- if ((is_numeric($value)) && (is_numeric($a)) && (is_numeric($b))) {
- if (($value < 0) || ($a <= 0) || ($b <= 0)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
- if ($cumulative) {
- return self::incompleteGamma($a, $value / $b) / self::gamma($a);
- } else {
- return (1 / (pow($b, $a) * self::gamma($a))) * pow($value, $a-1) * exp(0-($value / $b));
- }
- }
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * GAMMAINV
- *
- * Returns the inverse of the beta distribution.
- *
- * @param float $probability Probability at which you want to evaluate the distribution
- * @param float $alpha Parameter to the distribution
- * @param float $beta Parameter to the distribution
- * @return float
- *
- */
- public static function GAMMAINV($probability, $alpha, $beta)
- {
- $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
- $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
- $beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta);
-
- if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta))) {
- if (($alpha <= 0) || ($beta <= 0) || ($probability < 0) || ($probability > 1)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
-
- $xLo = 0;
- $xHi = $alpha * $beta * 5;
-
- $x = $xNew = 1;
- $error = $pdf = 0;
- $dx = 1024;
- $i = 0;
-
- while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {
- // Apply Newton-Raphson step
- $error = self::GAMMADIST($x, $alpha, $beta, true) - $probability;
- if ($error < 0.0) {
- $xLo = $x;
- } else {
- $xHi = $x;
- }
- $pdf = self::GAMMADIST($x, $alpha, $beta, false);
- // Avoid division by zero
- if ($pdf != 0.0) {
- $dx = $error / $pdf;
- $xNew = $x - $dx;
- }
- // If the NR fails to converge (which for example may be the
- // case if the initial guess is too rough) we apply a bisection
- // step to determine a more narrow interval around the root.
- if (($xNew < $xLo) || ($xNew > $xHi) || ($pdf == 0.0)) {
- $xNew = ($xLo + $xHi) / 2;
- $dx = $xNew - $x;
- }
- $x = $xNew;
- }
- if ($i == MAX_ITERATIONS) {
- return PHPExcel_Calculation_Functions::NA();
- }
- return $x;
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * GAMMALN
- *
- * Returns the natural logarithm of the gamma function.
- *
- * @param float $value
- * @return float
- */
- public static function GAMMALN($value)
- {
- $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
-
- if (is_numeric($value)) {
- if ($value <= 0) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- return log(self::gamma($value));
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * GEOMEAN
- *
- * Returns the geometric mean of an array or range of positive data. For example, you
- * can use GEOMEAN to calculate average growth rate given compound interest with
- * variable rates.
- *
- * Excel Function:
- * GEOMEAN(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function GEOMEAN()
- {
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
-
- $aMean = PHPExcel_Calculation_MathTrig::PRODUCT($aArgs);
- if (is_numeric($aMean) && ($aMean > 0)) {
- $aCount = self::COUNT($aArgs) ;
- if (self::MIN($aArgs) > 0) {
- return pow($aMean, (1 / $aCount));
- }
- }
- return PHPExcel_Calculation_Functions::NaN();
- }
-
-
- /**
- * GROWTH
- *
- * Returns values along a predicted emponential trend
- *
- * @param array of mixed Data Series Y
- * @param array of mixed Data Series X
- * @param array of mixed Values of X for which we want to find Y
- * @param boolean A logical value specifying whether to force the intersect to equal 0.
- * @return array of float
- */
- public static function GROWTH($yValues, $xValues = array(), $newValues = array(), $const = true)
- {
- $yValues = PHPExcel_Calculation_Functions::flattenArray($yValues);
- $xValues = PHPExcel_Calculation_Functions::flattenArray($xValues);
- $newValues = PHPExcel_Calculation_Functions::flattenArray($newValues);
- $const = (is_null($const)) ? true : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);
-
- $bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL, $yValues, $xValues, $const);
- if (empty($newValues)) {
- $newValues = $bestFitExponential->getXValues();
- }
-
- $returnArray = array();
- foreach ($newValues as $xValue) {
- $returnArray[0][] = $bestFitExponential->getValueOfYForX($xValue);
- }
-
- return $returnArray;
- }
-
-
- /**
- * HARMEAN
- *
- * Returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the
- * arithmetic mean of reciprocals.
- *
- * Excel Function:
- * HARMEAN(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function HARMEAN()
- {
- // Return value
- $returnValue = PHPExcel_Calculation_Functions::NA();
-
- // Loop through arguments
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
- if (self::MIN($aArgs) < 0) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- $aCount = 0;
- foreach ($aArgs as $arg) {
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- if ($arg <= 0) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- if (is_null($returnValue)) {
- $returnValue = (1 / $arg);
- } else {
- $returnValue += (1 / $arg);
- }
- ++$aCount;
- }
- }
-
- // Return
- if ($aCount > 0) {
- return 1 / ($returnValue / $aCount);
- } else {
- return $returnValue;
- }
- }
-
-
- /**
- * HYPGEOMDIST
- *
- * Returns the hypergeometric distribution. HYPGEOMDIST returns the probability of a given number of
- * sample successes, given the sample size, population successes, and population size.
- *
- * @param float $sampleSuccesses Number of successes in the sample
- * @param float $sampleNumber Size of the sample
- * @param float $populationSuccesses Number of successes in the population
- * @param float $populationNumber Population size
- * @return float
- *
- */
- public static function HYPGEOMDIST($sampleSuccesses, $sampleNumber, $populationSuccesses, $populationNumber)
- {
- $sampleSuccesses = floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleSuccesses));
- $sampleNumber = floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleNumber));
- $populationSuccesses = floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationSuccesses));
- $populationNumber = floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationNumber));
-
- if ((is_numeric($sampleSuccesses)) && (is_numeric($sampleNumber)) && (is_numeric($populationSuccesses)) && (is_numeric($populationNumber))) {
- if (($sampleSuccesses < 0) || ($sampleSuccesses > $sampleNumber) || ($sampleSuccesses > $populationSuccesses)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- if (($sampleNumber <= 0) || ($sampleNumber > $populationNumber)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- if (($populationSuccesses <= 0) || ($populationSuccesses > $populationNumber)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- return PHPExcel_Calculation_MathTrig::COMBIN($populationSuccesses, $sampleSuccesses) *
- PHPExcel_Calculation_MathTrig::COMBIN($populationNumber - $populationSuccesses, $sampleNumber - $sampleSuccesses) /
- PHPExcel_Calculation_MathTrig::COMBIN($populationNumber, $sampleNumber);
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * INTERCEPT
- *
- * Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values.
- *
- * @param array of mixed Data Series Y
- * @param array of mixed Data Series X
- * @return float
- */
- public static function INTERCEPT($yValues, $xValues)
- {
- if (!self::checkTrendArrays($yValues, $xValues)) {
- return PHPExcel_Calculation_Functions::VALUE();
- }
- $yValueCount = count($yValues);
- $xValueCount = count($xValues);
-
- if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
- return PHPExcel_Calculation_Functions::NA();
- } elseif ($yValueCount == 1) {
- return PHPExcel_Calculation_Functions::DIV0();
- }
-
- $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
- return $bestFitLinear->getIntersect();
- }
-
-
- /**
- * KURT
- *
- * Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness
- * or flatness of a distribution compared with the normal distribution. Positive
- * kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a
- * relatively flat distribution.
- *
- * @param array Data Series
- * @return float
- */
- public static function KURT()
- {
- $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
- $mean = self::AVERAGE($aArgs);
- $stdDev = self::STDEV($aArgs);
-
- if ($stdDev > 0) {
- $count = $summer = 0;
- // Loop through arguments
- foreach ($aArgs as $k => $arg) {
- if ((is_bool($arg)) &&
- (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
- } else {
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- $summer += pow((($arg - $mean) / $stdDev), 4);
- ++$count;
- }
- }
- }
-
- // Return
- if ($count > 3) {
- return $summer * ($count * ($count+1) / (($count-1) * ($count-2) * ($count-3))) - (3 * pow($count-1, 2) / (($count-2) * ($count-3)));
- }
- }
- return PHPExcel_Calculation_Functions::DIV0();
- }
-
-
- /**
- * LARGE
- *
- * Returns the nth largest value in a data set. You can use this function to
- * select a value based on its relative standing.
- *
- * Excel Function:
- * LARGE(value1[,value2[, ...]],entry)
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @param int $entry Position (ordered from the largest) in the array or range of data to return
- * @return float
- *
- */
- public static function LARGE()
- {
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
-
- // Calculate
- $entry = floor(array_pop($aArgs));
-
- if ((is_numeric($entry)) && (!is_string($entry))) {
- $mArgs = array();
- foreach ($aArgs as $arg) {
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- $mArgs[] = $arg;
- }
- }
- $count = self::COUNT($mArgs);
- $entry = floor(--$entry);
- if (($entry < 0) || ($entry >= $count) || ($count == 0)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- rsort($mArgs);
- return $mArgs[$entry];
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * LINEST
- *
- * Calculates the statistics for a line by using the "least squares" method to calculate a straight line that best fits your data,
- * and then returns an array that describes the line.
- *
- * @param array of mixed Data Series Y
- * @param array of mixed Data Series X
- * @param boolean A logical value specifying whether to force the intersect to equal 0.
- * @param boolean A logical value specifying whether to return additional regression statistics.
- * @return array
- */
- public static function LINEST($yValues, $xValues = null, $const = true, $stats = false)
- {
- $const = (is_null($const)) ? true : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);
- $stats = (is_null($stats)) ? false : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats);
- if (is_null($xValues)) {
- $xValues = range(1, count(PHPExcel_Calculation_Functions::flattenArray($yValues)));
- }
-
- if (!self::checkTrendArrays($yValues, $xValues)) {
- return PHPExcel_Calculation_Functions::VALUE();
- }
- $yValueCount = count($yValues);
- $xValueCount = count($xValues);
-
-
- if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
- return PHPExcel_Calculation_Functions::NA();
- } elseif ($yValueCount == 1) {
- return 0;
- }
-
- $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues, $const);
- if ($stats) {
- return array(
- array(
- $bestFitLinear->getSlope(),
- $bestFitLinear->getSlopeSE(),
- $bestFitLinear->getGoodnessOfFit(),
- $bestFitLinear->getF(),
- $bestFitLinear->getSSRegression(),
- ),
- array(
- $bestFitLinear->getIntersect(),
- $bestFitLinear->getIntersectSE(),
- $bestFitLinear->getStdevOfResiduals(),
- $bestFitLinear->getDFResiduals(),
- $bestFitLinear->getSSResiduals()
- )
- );
- } else {
- return array(
- $bestFitLinear->getSlope(),
- $bestFitLinear->getIntersect()
- );
- }
- }
-
-
- /**
- * LOGEST
- *
- * Calculates an exponential curve that best fits the X and Y data series,
- * and then returns an array that describes the line.
- *
- * @param array of mixed Data Series Y
- * @param array of mixed Data Series X
- * @param boolean A logical value specifying whether to force the intersect to equal 0.
- * @param boolean A logical value specifying whether to return additional regression statistics.
- * @return array
- */
- public static function LOGEST($yValues, $xValues = null, $const = true, $stats = false)
- {
- $const = (is_null($const)) ? true : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);
- $stats = (is_null($stats)) ? false : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats);
- if (is_null($xValues)) {
- $xValues = range(1, count(PHPExcel_Calculation_Functions::flattenArray($yValues)));
- }
-
- if (!self::checkTrendArrays($yValues, $xValues)) {
- return PHPExcel_Calculation_Functions::VALUE();
- }
- $yValueCount = count($yValues);
- $xValueCount = count($xValues);
-
- foreach ($yValues as $value) {
- if ($value <= 0.0) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- }
-
-
- if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
- return PHPExcel_Calculation_Functions::NA();
- } elseif ($yValueCount == 1) {
- return 1;
- }
-
- $bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL, $yValues, $xValues, $const);
- if ($stats) {
- return array(
- array(
- $bestFitExponential->getSlope(),
- $bestFitExponential->getSlopeSE(),
- $bestFitExponential->getGoodnessOfFit(),
- $bestFitExponential->getF(),
- $bestFitExponential->getSSRegression(),
- ),
- array(
- $bestFitExponential->getIntersect(),
- $bestFitExponential->getIntersectSE(),
- $bestFitExponential->getStdevOfResiduals(),
- $bestFitExponential->getDFResiduals(),
- $bestFitExponential->getSSResiduals()
- )
- );
- } else {
- return array(
- $bestFitExponential->getSlope(),
- $bestFitExponential->getIntersect()
- );
- }
- }
-
-
- /**
- * LOGINV
- *
- * Returns the inverse of the normal cumulative distribution
- *
- * @param float $probability
- * @param float $mean
- * @param float $stdDev
- * @return float
- *
- * @todo Try implementing P J Acklam's refinement algorithm for greater
- * accuracy if I can get my head round the mathematics
- * (as described at) http://home.online.no/~pjacklam/notes/invnorm/
- */
- public static function LOGINV($probability, $mean, $stdDev)
- {
- $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
- $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
- $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
-
- if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
- if (($probability < 0) || ($probability > 1) || ($stdDev <= 0)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- return exp($mean + $stdDev * self::NORMSINV($probability));
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * LOGNORMDIST
- *
- * Returns the cumulative lognormal distribution of x, where ln(x) is normally distributed
- * with parameters mean and standard_dev.
- *
- * @param float $value
- * @param float $mean
- * @param float $stdDev
- * @return float
- */
- public static function LOGNORMDIST($value, $mean, $stdDev)
- {
- $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
- $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
- $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
-
- if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
- if (($value <= 0) || ($stdDev <= 0)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- return self::NORMSDIST((log($value) - $mean) / $stdDev);
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * MAX
- *
- * MAX returns the value of the element of the values passed that has the highest value,
- * with negative numbers considered smaller than positive numbers.
- *
- * Excel Function:
- * MAX(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function MAX()
- {
- $returnValue = null;
-
- // Loop through arguments
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
- foreach ($aArgs as $arg) {
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- if ((is_null($returnValue)) || ($arg > $returnValue)) {
- $returnValue = $arg;
- }
- }
- }
-
- if (is_null($returnValue)) {
- return 0;
- }
- return $returnValue;
- }
-
-
- /**
- * MAXA
- *
- * Returns the greatest value in a list of arguments, including numbers, text, and logical values
- *
- * Excel Function:
- * MAXA(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function MAXA()
- {
- $returnValue = null;
-
- // Loop through arguments
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
- foreach ($aArgs as $arg) {
- // Is it a numeric value?
- if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
- if (is_bool($arg)) {
- $arg = (integer) $arg;
- } elseif (is_string($arg)) {
- $arg = 0;
- }
- if ((is_null($returnValue)) || ($arg > $returnValue)) {
- $returnValue = $arg;
- }
- }
- }
-
- if (is_null($returnValue)) {
- return 0;
- }
- return $returnValue;
- }
-
-
- /**
- * MAXIF
- *
- * Counts the maximum value within a range of cells that contain numbers within the list of arguments
- *
- * Excel Function:
- * MAXIF(value1[,value2[, ...]],condition)
- *
- * @access public
- * @category Mathematical and Trigonometric Functions
- * @param mixed $arg,... Data values
- * @param string $condition The criteria that defines which cells will be checked.
- * @return float
- */
- public static function MAXIF($aArgs, $condition, $sumArgs = array())
- {
- $returnValue = null;
-
- $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);
- $sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs);
- if (empty($sumArgs)) {
- $sumArgs = $aArgs;
- }
- $condition = PHPExcel_Calculation_Functions::ifCondition($condition);
- // Loop through arguments
- foreach ($aArgs as $key => $arg) {
- if (!is_numeric($arg)) {
- $arg = PHPExcel_Calculation::wrapResult(strtoupper($arg));
- }
- $testCondition = '='.$arg.$condition;
- if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
- if ((is_null($returnValue)) || ($arg > $returnValue)) {
- $returnValue = $arg;
- }
- }
- }
-
- return $returnValue;
- }
-
- /**
- * MEDIAN
- *
- * Returns the median of the given numbers. The median is the number in the middle of a set of numbers.
- *
- * Excel Function:
- * MEDIAN(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function MEDIAN()
- {
- $returnValue = PHPExcel_Calculation_Functions::NaN();
-
- $mArgs = array();
- // Loop through arguments
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
- foreach ($aArgs as $arg) {
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- $mArgs[] = $arg;
- }
- }
-
- $mValueCount = count($mArgs);
- if ($mValueCount > 0) {
- sort($mArgs, SORT_NUMERIC);
- $mValueCount = $mValueCount / 2;
- if ($mValueCount == floor($mValueCount)) {
- $returnValue = ($mArgs[$mValueCount--] + $mArgs[$mValueCount]) / 2;
- } else {
- $mValueCount = floor($mValueCount);
- $returnValue = $mArgs[$mValueCount];
- }
- }
-
- return $returnValue;
- }
-
-
- /**
- * MIN
- *
- * MIN returns the value of the element of the values passed that has the smallest value,
- * with negative numbers considered smaller than positive numbers.
- *
- * Excel Function:
- * MIN(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function MIN()
- {
- $returnValue = null;
-
- // Loop through arguments
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
- foreach ($aArgs as $arg) {
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- if ((is_null($returnValue)) || ($arg < $returnValue)) {
- $returnValue = $arg;
- }
- }
- }
-
- if (is_null($returnValue)) {
- return 0;
- }
- return $returnValue;
- }
-
-
- /**
- * MINA
- *
- * Returns the smallest value in a list of arguments, including numbers, text, and logical values
- *
- * Excel Function:
- * MINA(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function MINA()
- {
- $returnValue = null;
-
- // Loop through arguments
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
- foreach ($aArgs as $arg) {
- // Is it a numeric value?
- if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
- if (is_bool($arg)) {
- $arg = (integer) $arg;
- } elseif (is_string($arg)) {
- $arg = 0;
- }
- if ((is_null($returnValue)) || ($arg < $returnValue)) {
- $returnValue = $arg;
- }
- }
- }
-
- if (is_null($returnValue)) {
- return 0;
- }
- return $returnValue;
- }
-
-
- /**
- * MINIF
- *
- * Returns the minimum value within a range of cells that contain numbers within the list of arguments
- *
- * Excel Function:
- * MINIF(value1[,value2[, ...]],condition)
- *
- * @access public
- * @category Mathematical and Trigonometric Functions
- * @param mixed $arg,... Data values
- * @param string $condition The criteria that defines which cells will be checked.
- * @return float
- */
- public static function MINIF($aArgs, $condition, $sumArgs = array())
- {
- $returnValue = null;
-
- $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);
- $sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs);
- if (empty($sumArgs)) {
- $sumArgs = $aArgs;
- }
- $condition = PHPExcel_Calculation_Functions::ifCondition($condition);
- // Loop through arguments
- foreach ($aArgs as $key => $arg) {
- if (!is_numeric($arg)) {
- $arg = PHPExcel_Calculation::wrapResult(strtoupper($arg));
- }
- $testCondition = '='.$arg.$condition;
- if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
- if ((is_null($returnValue)) || ($arg < $returnValue)) {
- $returnValue = $arg;
- }
- }
- }
-
- return $returnValue;
- }
-
-
- //
- // Special variant of array_count_values that isn't limited to strings and integers,
- // but can work with floating point numbers as values
- //
- private static function modeCalc($data)
- {
- $frequencyArray = array();
- foreach ($data as $datum) {
- $found = false;
- foreach ($frequencyArray as $key => $value) {
- if ((string) $value['value'] == (string) $datum) {
- ++$frequencyArray[$key]['frequency'];
- $found = true;
- break;
- }
- }
- if (!$found) {
- $frequencyArray[] = array(
- 'value' => $datum,
- 'frequency' => 1
- );
- }
- }
-
- foreach ($frequencyArray as $key => $value) {
- $frequencyList[$key] = $value['frequency'];
- $valueList[$key] = $value['value'];
- }
- array_multisort($frequencyList, SORT_DESC, $valueList, SORT_ASC, SORT_NUMERIC, $frequencyArray);
-
- if ($frequencyArray[0]['frequency'] == 1) {
- return PHPExcel_Calculation_Functions::NA();
- }
- return $frequencyArray[0]['value'];
- }
-
-
- /**
- * MODE
- *
- * Returns the most frequently occurring, or repetitive, value in an array or range of data
- *
- * Excel Function:
- * MODE(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function MODE()
- {
- $returnValue = PHPExcel_Calculation_Functions::NA();
-
- // Loop through arguments
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
-
- $mArgs = array();
- foreach ($aArgs as $arg) {
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- $mArgs[] = $arg;
- }
- }
-
- if (!empty($mArgs)) {
- return self::modeCalc($mArgs);
- }
-
- return $returnValue;
- }
-
-
- /**
- * NEGBINOMDIST
- *
- * Returns the negative binomial distribution. NEGBINOMDIST returns the probability that
- * there will be number_f failures before the number_s-th success, when the constant
- * probability of a success is probability_s. This function is similar to the binomial
- * distribution, except that the number of successes is fixed, and the number of trials is
- * variable. Like the binomial, trials are assumed to be independent.
- *
- * @param float $failures Number of Failures
- * @param float $successes Threshold number of Successes
- * @param float $probability Probability of success on each trial
- * @return float
- *
- */
- public static function NEGBINOMDIST($failures, $successes, $probability)
- {
- $failures = floor(PHPExcel_Calculation_Functions::flattenSingleValue($failures));
- $successes = floor(PHPExcel_Calculation_Functions::flattenSingleValue($successes));
- $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
-
- if ((is_numeric($failures)) && (is_numeric($successes)) && (is_numeric($probability))) {
- if (($failures < 0) || ($successes < 1)) {
- return PHPExcel_Calculation_Functions::NaN();
- } elseif (($probability < 0) || ($probability > 1)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) {
- if (($failures + $successes - 1) <= 0) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- }
- return (PHPExcel_Calculation_MathTrig::COMBIN($failures + $successes - 1, $successes - 1)) * (pow($probability, $successes)) * (pow(1 - $probability, $failures));
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * NORMDIST
- *
- * Returns the normal distribution for the specified mean and standard deviation. This
- * function has a very wide range of applications in statistics, including hypothesis
- * testing.
- *
- * @param float $value
- * @param float $mean Mean Value
- * @param float $stdDev Standard Deviation
- * @param boolean $cumulative
- * @return float
- *
- */
- public static function NORMDIST($value, $mean, $stdDev, $cumulative)
- {
- $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
- $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
- $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
-
- if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
- if ($stdDev < 0) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
- if ($cumulative) {
- return 0.5 * (1 + PHPExcel_Calculation_Engineering::erfVal(($value - $mean) / ($stdDev * sqrt(2))));
- } else {
- return (1 / (SQRT2PI * $stdDev)) * exp(0 - (pow($value - $mean, 2) / (2 * ($stdDev * $stdDev))));
- }
- }
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * NORMINV
- *
- * Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation.
- *
- * @param float $value
- * @param float $mean Mean Value
- * @param float $stdDev Standard Deviation
- * @return float
- *
- */
- public static function NORMINV($probability, $mean, $stdDev)
- {
- $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
- $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
- $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
-
- if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
- if (($probability < 0) || ($probability > 1)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- if ($stdDev < 0) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- return (self::inverseNcdf($probability) * $stdDev) + $mean;
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * NORMSDIST
- *
- * Returns the standard normal cumulative distribution function. The distribution has
- * a mean of 0 (zero) and a standard deviation of one. Use this function in place of a
- * table of standard normal curve areas.
- *
- * @param float $value
- * @return float
- */
- public static function NORMSDIST($value)
- {
- $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
-
- return self::NORMDIST($value, 0, 1, true);
- }
-
-
- /**
- * NORMSINV
- *
- * Returns the inverse of the standard normal cumulative distribution
- *
- * @param float $value
- * @return float
- */
- public static function NORMSINV($value)
- {
- return self::NORMINV($value, 0, 1);
- }
-
-
- /**
- * PERCENTILE
- *
- * Returns the nth percentile of values in a range..
- *
- * Excel Function:
- * PERCENTILE(value1[,value2[, ...]],entry)
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @param float $entry Percentile value in the range 0..1, inclusive.
- * @return float
- */
- public static function PERCENTILE()
- {
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
-
- // Calculate
- $entry = array_pop($aArgs);
-
- if ((is_numeric($entry)) && (!is_string($entry))) {
- if (($entry < 0) || ($entry > 1)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- $mArgs = array();
- foreach ($aArgs as $arg) {
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- $mArgs[] = $arg;
- }
- }
- $mValueCount = count($mArgs);
- if ($mValueCount > 0) {
- sort($mArgs);
- $count = self::COUNT($mArgs);
- $index = $entry * ($count-1);
- $iBase = floor($index);
- if ($index == $iBase) {
- return $mArgs[$index];
- } else {
- $iNext = $iBase + 1;
- $iProportion = $index - $iBase;
- return $mArgs[$iBase] + (($mArgs[$iNext] - $mArgs[$iBase]) * $iProportion) ;
- }
- }
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * PERCENTRANK
- *
- * Returns the rank of a value in a data set as a percentage of the data set.
- *
- * @param array of number An array of, or a reference to, a list of numbers.
- * @param number The number whose rank you want to find.
- * @param number The number of significant digits for the returned percentage value.
- * @return float
- */
- public static function PERCENTRANK($valueSet, $value, $significance = 3)
- {
- $valueSet = PHPExcel_Calculation_Functions::flattenArray($valueSet);
- $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
- $significance = (is_null($significance)) ? 3 : (integer) PHPExcel_Calculation_Functions::flattenSingleValue($significance);
-
- foreach ($valueSet as $key => $valueEntry) {
- if (!is_numeric($valueEntry)) {
- unset($valueSet[$key]);
- }
- }
- sort($valueSet, SORT_NUMERIC);
- $valueCount = count($valueSet);
- if ($valueCount == 0) {
- return PHPExcel_Calculation_Functions::NaN();
- }
-
- $valueAdjustor = $valueCount - 1;
- if (($value < $valueSet[0]) || ($value > $valueSet[$valueAdjustor])) {
- return PHPExcel_Calculation_Functions::NA();
- }
-
- $pos = array_search($value, $valueSet);
- if ($pos === false) {
- $pos = 0;
- $testValue = $valueSet[0];
- while ($testValue < $value) {
- $testValue = $valueSet[++$pos];
- }
- --$pos;
- $pos += (($value - $valueSet[$pos]) / ($testValue - $valueSet[$pos]));
- }
-
- return round($pos / $valueAdjustor, $significance);
- }
-
-
- /**
- * PERMUT
- *
- * Returns the number of permutations for a given number of objects that can be
- * selected from number objects. A permutation is any set or subset of objects or
- * events where internal order is significant. Permutations are different from
- * combinations, for which the internal order is not significant. Use this function
- * for lottery-style probability calculations.
- *
- * @param int $numObjs Number of different objects
- * @param int $numInSet Number of objects in each permutation
- * @return int Number of permutations
- */
- public static function PERMUT($numObjs, $numInSet)
- {
- $numObjs = PHPExcel_Calculation_Functions::flattenSingleValue($numObjs);
- $numInSet = PHPExcel_Calculation_Functions::flattenSingleValue($numInSet);
-
- if ((is_numeric($numObjs)) && (is_numeric($numInSet))) {
- $numInSet = floor($numInSet);
- if ($numObjs < $numInSet) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- return round(PHPExcel_Calculation_MathTrig::FACT($numObjs) / PHPExcel_Calculation_MathTrig::FACT($numObjs - $numInSet));
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * POISSON
- *
- * Returns the Poisson distribution. A common application of the Poisson distribution
- * is predicting the number of events over a specific time, such as the number of
- * cars arriving at a toll plaza in 1 minute.
- *
- * @param float $value
- * @param float $mean Mean Value
- * @param boolean $cumulative
- * @return float
- *
- */
- public static function POISSON($value, $mean, $cumulative)
- {
- $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
- $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
-
- if ((is_numeric($value)) && (is_numeric($mean))) {
- if (($value < 0) || ($mean <= 0)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
- if ($cumulative) {
- $summer = 0;
- for ($i = 0; $i <= floor($value); ++$i) {
- $summer += pow($mean, $i) / PHPExcel_Calculation_MathTrig::FACT($i);
- }
- return exp(0-$mean) * $summer;
- } else {
- return (exp(0-$mean) * pow($mean, $value)) / PHPExcel_Calculation_MathTrig::FACT($value);
- }
- }
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * QUARTILE
- *
- * Returns the quartile of a data set.
- *
- * Excel Function:
- * QUARTILE(value1[,value2[, ...]],entry)
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @param int $entry Quartile value in the range 1..3, inclusive.
- * @return float
- */
- public static function QUARTILE()
- {
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
-
- // Calculate
- $entry = floor(array_pop($aArgs));
-
- if ((is_numeric($entry)) && (!is_string($entry))) {
- $entry /= 4;
- if (($entry < 0) || ($entry > 1)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- return self::PERCENTILE($aArgs, $entry);
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * RANK
- *
- * Returns the rank of a number in a list of numbers.
- *
- * @param number The number whose rank you want to find.
- * @param array of number An array of, or a reference to, a list of numbers.
- * @param mixed Order to sort the values in the value set
- * @return float
- */
- public static function RANK($value, $valueSet, $order = 0)
- {
- $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
- $valueSet = PHPExcel_Calculation_Functions::flattenArray($valueSet);
- $order = (is_null($order)) ? 0 : (integer) PHPExcel_Calculation_Functions::flattenSingleValue($order);
-
- foreach ($valueSet as $key => $valueEntry) {
- if (!is_numeric($valueEntry)) {
- unset($valueSet[$key]);
- }
- }
-
- if ($order == 0) {
- rsort($valueSet, SORT_NUMERIC);
- } else {
- sort($valueSet, SORT_NUMERIC);
- }
- $pos = array_search($value, $valueSet);
- if ($pos === false) {
- return PHPExcel_Calculation_Functions::NA();
- }
-
- return ++$pos;
- }
-
-
- /**
- * RSQ
- *
- * Returns the square of the Pearson product moment correlation coefficient through data points in known_y's and known_x's.
- *
- * @param array of mixed Data Series Y
- * @param array of mixed Data Series X
- * @return float
- */
- public static function RSQ($yValues, $xValues)
- {
- if (!self::checkTrendArrays($yValues, $xValues)) {
- return PHPExcel_Calculation_Functions::VALUE();
- }
- $yValueCount = count($yValues);
- $xValueCount = count($xValues);
-
- if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
- return PHPExcel_Calculation_Functions::NA();
- } elseif ($yValueCount == 1) {
- return PHPExcel_Calculation_Functions::DIV0();
- }
-
- $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
- return $bestFitLinear->getGoodnessOfFit();
- }
-
-
- /**
- * SKEW
- *
- * Returns the skewness of a distribution. Skewness characterizes the degree of asymmetry
- * of a distribution around its mean. Positive skewness indicates a distribution with an
- * asymmetric tail extending toward more positive values. Negative skewness indicates a
- * distribution with an asymmetric tail extending toward more negative values.
- *
- * @param array Data Series
- * @return float
- */
- public static function SKEW()
- {
- $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
- $mean = self::AVERAGE($aArgs);
- $stdDev = self::STDEV($aArgs);
-
- $count = $summer = 0;
- // Loop through arguments
- foreach ($aArgs as $k => $arg) {
- if ((is_bool($arg)) &&
- (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
- } else {
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- $summer += pow((($arg - $mean) / $stdDev), 3);
- ++$count;
- }
- }
- }
-
- if ($count > 2) {
- return $summer * ($count / (($count-1) * ($count-2)));
- }
- return PHPExcel_Calculation_Functions::DIV0();
- }
-
-
- /**
- * SLOPE
- *
- * Returns the slope of the linear regression line through data points in known_y's and known_x's.
- *
- * @param array of mixed Data Series Y
- * @param array of mixed Data Series X
- * @return float
- */
- public static function SLOPE($yValues, $xValues)
- {
- if (!self::checkTrendArrays($yValues, $xValues)) {
- return PHPExcel_Calculation_Functions::VALUE();
- }
- $yValueCount = count($yValues);
- $xValueCount = count($xValues);
-
- if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
- return PHPExcel_Calculation_Functions::NA();
- } elseif ($yValueCount == 1) {
- return PHPExcel_Calculation_Functions::DIV0();
- }
-
- $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
- return $bestFitLinear->getSlope();
- }
-
-
- /**
- * SMALL
- *
- * Returns the nth smallest value in a data set. You can use this function to
- * select a value based on its relative standing.
- *
- * Excel Function:
- * SMALL(value1[,value2[, ...]],entry)
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @param int $entry Position (ordered from the smallest) in the array or range of data to return
- * @return float
- */
- public static function SMALL()
- {
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
-
- // Calculate
- $entry = array_pop($aArgs);
-
- if ((is_numeric($entry)) && (!is_string($entry))) {
- $mArgs = array();
- foreach ($aArgs as $arg) {
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- $mArgs[] = $arg;
- }
- }
- $count = self::COUNT($mArgs);
- $entry = floor(--$entry);
- if (($entry < 0) || ($entry >= $count) || ($count == 0)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- sort($mArgs);
- return $mArgs[$entry];
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * STANDARDIZE
- *
- * Returns a normalized value from a distribution characterized by mean and standard_dev.
- *
- * @param float $value Value to normalize
- * @param float $mean Mean Value
- * @param float $stdDev Standard Deviation
- * @return float Standardized value
- */
- public static function STANDARDIZE($value, $mean, $stdDev)
- {
- $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
- $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
- $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
-
- if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
- if ($stdDev <= 0) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- return ($value - $mean) / $stdDev ;
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * STDEV
- *
- * Estimates standard deviation based on a sample. The standard deviation is a measure of how
- * widely values are dispersed from the average value (the mean).
- *
- * Excel Function:
- * STDEV(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function STDEV()
- {
- $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
-
- // Return value
- $returnValue = null;
-
- $aMean = self::AVERAGE($aArgs);
- if (!is_null($aMean)) {
- $aCount = -1;
- foreach ($aArgs as $k => $arg) {
- if ((is_bool($arg)) &&
- ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
- $arg = (integer) $arg;
- }
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- if (is_null($returnValue)) {
- $returnValue = pow(($arg - $aMean), 2);
- } else {
- $returnValue += pow(($arg - $aMean), 2);
- }
- ++$aCount;
- }
- }
-
- // Return
- if (($aCount > 0) && ($returnValue >= 0)) {
- return sqrt($returnValue / $aCount);
- }
- }
- return PHPExcel_Calculation_Functions::DIV0();
- }
-
-
- /**
- * STDEVA
- *
- * Estimates standard deviation based on a sample, including numbers, text, and logical values
- *
- * Excel Function:
- * STDEVA(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function STDEVA()
- {
- $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
-
- $returnValue = null;
-
- $aMean = self::AVERAGEA($aArgs);
- if (!is_null($aMean)) {
- $aCount = -1;
- foreach ($aArgs as $k => $arg) {
- if ((is_bool($arg)) &&
- (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
- } else {
- // Is it a numeric value?
- if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
- if (is_bool($arg)) {
- $arg = (integer) $arg;
- } elseif (is_string($arg)) {
- $arg = 0;
- }
- if (is_null($returnValue)) {
- $returnValue = pow(($arg - $aMean), 2);
- } else {
- $returnValue += pow(($arg - $aMean), 2);
- }
- ++$aCount;
- }
- }
- }
-
- if (($aCount > 0) && ($returnValue >= 0)) {
- return sqrt($returnValue / $aCount);
- }
- }
- return PHPExcel_Calculation_Functions::DIV0();
- }
-
-
- /**
- * STDEVP
- *
- * Calculates standard deviation based on the entire population
- *
- * Excel Function:
- * STDEVP(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function STDEVP()
- {
- $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
-
- $returnValue = null;
-
- $aMean = self::AVERAGE($aArgs);
- if (!is_null($aMean)) {
- $aCount = 0;
- foreach ($aArgs as $k => $arg) {
- if ((is_bool($arg)) &&
- ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
- $arg = (integer) $arg;
- }
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- if (is_null($returnValue)) {
- $returnValue = pow(($arg - $aMean), 2);
- } else {
- $returnValue += pow(($arg - $aMean), 2);
- }
- ++$aCount;
- }
- }
-
- if (($aCount > 0) && ($returnValue >= 0)) {
- return sqrt($returnValue / $aCount);
- }
- }
- return PHPExcel_Calculation_Functions::DIV0();
- }
-
-
- /**
- * STDEVPA
- *
- * Calculates standard deviation based on the entire population, including numbers, text, and logical values
- *
- * Excel Function:
- * STDEVPA(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function STDEVPA()
- {
- $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
-
- $returnValue = null;
-
- $aMean = self::AVERAGEA($aArgs);
- if (!is_null($aMean)) {
- $aCount = 0;
- foreach ($aArgs as $k => $arg) {
- if ((is_bool($arg)) &&
- (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
- } else {
- // Is it a numeric value?
- if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
- if (is_bool($arg)) {
- $arg = (integer) $arg;
- } elseif (is_string($arg)) {
- $arg = 0;
- }
- if (is_null($returnValue)) {
- $returnValue = pow(($arg - $aMean), 2);
- } else {
- $returnValue += pow(($arg - $aMean), 2);
- }
- ++$aCount;
- }
- }
- }
-
- if (($aCount > 0) && ($returnValue >= 0)) {
- return sqrt($returnValue / $aCount);
- }
- }
- return PHPExcel_Calculation_Functions::DIV0();
- }
-
-
- /**
- * STEYX
- *
- * Returns the standard error of the predicted y-value for each x in the regression.
- *
- * @param array of mixed Data Series Y
- * @param array of mixed Data Series X
- * @return float
- */
- public static function STEYX($yValues, $xValues)
- {
- if (!self::checkTrendArrays($yValues, $xValues)) {
- return PHPExcel_Calculation_Functions::VALUE();
- }
- $yValueCount = count($yValues);
- $xValueCount = count($xValues);
-
- if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
- return PHPExcel_Calculation_Functions::NA();
- } elseif ($yValueCount == 1) {
- return PHPExcel_Calculation_Functions::DIV0();
- }
-
- $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
- return $bestFitLinear->getStdevOfResiduals();
- }
-
-
- /**
- * TDIST
- *
- * Returns the probability of Student's T distribution.
- *
- * @param float $value Value for the function
- * @param float $degrees degrees of freedom
- * @param float $tails number of tails (1 or 2)
- * @return float
- */
- public static function TDIST($value, $degrees, $tails)
- {
- $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
- $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));
- $tails = floor(PHPExcel_Calculation_Functions::flattenSingleValue($tails));
-
- if ((is_numeric($value)) && (is_numeric($degrees)) && (is_numeric($tails))) {
- if (($value < 0) || ($degrees < 1) || ($tails < 1) || ($tails > 2)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- // tdist, which finds the probability that corresponds to a given value
- // of t with k degrees of freedom. This algorithm is translated from a
- // pascal function on p81 of "Statistical Computing in Pascal" by D
- // Cooke, A H Craven & G M Clark (1985: Edward Arnold (Pubs.) Ltd:
- // London). The above Pascal algorithm is itself a translation of the
- // fortran algoritm "AS 3" by B E Cooper of the Atlas Computer
- // Laboratory as reported in (among other places) "Applied Statistics
- // Algorithms", editied by P Griffiths and I D Hill (1985; Ellis
- // Horwood Ltd.; W. Sussex, England).
- $tterm = $degrees;
- $ttheta = atan2($value, sqrt($tterm));
- $tc = cos($ttheta);
- $ts = sin($ttheta);
- $tsum = 0;
-
- if (($degrees % 2) == 1) {
- $ti = 3;
- $tterm = $tc;
- } else {
- $ti = 2;
- $tterm = 1;
- }
-
- $tsum = $tterm;
- while ($ti < $degrees) {
- $tterm *= $tc * $tc * ($ti - 1) / $ti;
- $tsum += $tterm;
- $ti += 2;
- }
- $tsum *= $ts;
- if (($degrees % 2) == 1) {
- $tsum = M_2DIVPI * ($tsum + $ttheta);
- }
- $tValue = 0.5 * (1 + $tsum);
- if ($tails == 1) {
- return 1 - abs($tValue);
- } else {
- return 1 - abs((1 - $tValue) - $tValue);
- }
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * TINV
- *
- * Returns the one-tailed probability of the chi-squared distribution.
- *
- * @param float $probability Probability for the function
- * @param float $degrees degrees of freedom
- * @return float
- */
- public static function TINV($probability, $degrees)
- {
- $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
- $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));
-
- if ((is_numeric($probability)) && (is_numeric($degrees))) {
- $xLo = 100;
- $xHi = 0;
-
- $x = $xNew = 1;
- $dx = 1;
- $i = 0;
-
- while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {
- // Apply Newton-Raphson step
- $result = self::TDIST($x, $degrees, 2);
- $error = $result - $probability;
- if ($error == 0.0) {
- $dx = 0;
- } elseif ($error < 0.0) {
- $xLo = $x;
- } else {
- $xHi = $x;
- }
- // Avoid division by zero
- if ($result != 0.0) {
- $dx = $error / $result;
- $xNew = $x - $dx;
- }
- // If the NR fails to converge (which for example may be the
- // case if the initial guess is too rough) we apply a bisection
- // step to determine a more narrow interval around the root.
- if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {
- $xNew = ($xLo + $xHi) / 2;
- $dx = $xNew - $x;
- }
- $x = $xNew;
- }
- if ($i == MAX_ITERATIONS) {
- return PHPExcel_Calculation_Functions::NA();
- }
- return round($x, 12);
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * TREND
- *
- * Returns values along a linear trend
- *
- * @param array of mixed Data Series Y
- * @param array of mixed Data Series X
- * @param array of mixed Values of X for which we want to find Y
- * @param boolean A logical value specifying whether to force the intersect to equal 0.
- * @return array of float
- */
- public static function TREND($yValues, $xValues = array(), $newValues = array(), $const = true)
- {
- $yValues = PHPExcel_Calculation_Functions::flattenArray($yValues);
- $xValues = PHPExcel_Calculation_Functions::flattenArray($xValues);
- $newValues = PHPExcel_Calculation_Functions::flattenArray($newValues);
- $const = (is_null($const)) ? true : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);
-
- $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues, $const);
- if (empty($newValues)) {
- $newValues = $bestFitLinear->getXValues();
- }
-
- $returnArray = array();
- foreach ($newValues as $xValue) {
- $returnArray[0][] = $bestFitLinear->getValueOfYForX($xValue);
- }
-
- return $returnArray;
- }
-
-
- /**
- * TRIMMEAN
- *
- * Returns the mean of the interior of a data set. TRIMMEAN calculates the mean
- * taken by excluding a percentage of data points from the top and bottom tails
- * of a data set.
- *
- * Excel Function:
- * TRIMEAN(value1[,value2[, ...]], $discard)
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @param float $discard Percentage to discard
- * @return float
- */
- public static function TRIMMEAN()
- {
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
-
- // Calculate
- $percent = array_pop($aArgs);
-
- if ((is_numeric($percent)) && (!is_string($percent))) {
- if (($percent < 0) || ($percent > 1)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- $mArgs = array();
- foreach ($aArgs as $arg) {
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- $mArgs[] = $arg;
- }
- }
- $discard = floor(self::COUNT($mArgs) * $percent / 2);
- sort($mArgs);
- for ($i=0; $i < $discard; ++$i) {
- array_pop($mArgs);
- array_shift($mArgs);
- }
- return self::AVERAGE($mArgs);
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * VARFunc
- *
- * Estimates variance based on a sample.
- *
- * Excel Function:
- * VAR(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function VARFunc()
- {
- $returnValue = PHPExcel_Calculation_Functions::DIV0();
-
- $summerA = $summerB = 0;
-
- // Loop through arguments
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
- $aCount = 0;
- foreach ($aArgs as $arg) {
- if (is_bool($arg)) {
- $arg = (integer) $arg;
- }
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- $summerA += ($arg * $arg);
- $summerB += $arg;
- ++$aCount;
- }
- }
-
- if ($aCount > 1) {
- $summerA *= $aCount;
- $summerB *= $summerB;
- $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));
- }
- return $returnValue;
- }
-
-
- /**
- * VARA
- *
- * Estimates variance based on a sample, including numbers, text, and logical values
- *
- * Excel Function:
- * VARA(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function VARA()
- {
- $returnValue = PHPExcel_Calculation_Functions::DIV0();
-
- $summerA = $summerB = 0;
-
- // Loop through arguments
- $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
- $aCount = 0;
- foreach ($aArgs as $k => $arg) {
- if ((is_string($arg)) &&
- (PHPExcel_Calculation_Functions::isValue($k))) {
- return PHPExcel_Calculation_Functions::VALUE();
- } elseif ((is_string($arg)) &&
- (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
- } else {
- // Is it a numeric value?
- if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
- if (is_bool($arg)) {
- $arg = (integer) $arg;
- } elseif (is_string($arg)) {
- $arg = 0;
- }
- $summerA += ($arg * $arg);
- $summerB += $arg;
- ++$aCount;
- }
- }
- }
-
- if ($aCount > 1) {
- $summerA *= $aCount;
- $summerB *= $summerB;
- $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));
- }
- return $returnValue;
- }
-
-
- /**
- * VARP
- *
- * Calculates variance based on the entire population
- *
- * Excel Function:
- * VARP(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function VARP()
- {
- // Return value
- $returnValue = PHPExcel_Calculation_Functions::DIV0();
-
- $summerA = $summerB = 0;
-
- // Loop through arguments
- $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
- $aCount = 0;
- foreach ($aArgs as $arg) {
- if (is_bool($arg)) {
- $arg = (integer) $arg;
- }
- // Is it a numeric value?
- if ((is_numeric($arg)) && (!is_string($arg))) {
- $summerA += ($arg * $arg);
- $summerB += $arg;
- ++$aCount;
- }
- }
-
- if ($aCount > 0) {
- $summerA *= $aCount;
- $summerB *= $summerB;
- $returnValue = ($summerA - $summerB) / ($aCount * $aCount);
- }
- return $returnValue;
- }
-
-
- /**
- * VARPA
- *
- * Calculates variance based on the entire population, including numbers, text, and logical values
- *
- * Excel Function:
- * VARPA(value1[,value2[, ...]])
- *
- * @access public
- * @category Statistical Functions
- * @param mixed $arg,... Data values
- * @return float
- */
- public static function VARPA()
- {
- $returnValue = PHPExcel_Calculation_Functions::DIV0();
-
- $summerA = $summerB = 0;
-
- // Loop through arguments
- $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
- $aCount = 0;
- foreach ($aArgs as $k => $arg) {
- if ((is_string($arg)) &&
- (PHPExcel_Calculation_Functions::isValue($k))) {
- return PHPExcel_Calculation_Functions::VALUE();
- } elseif ((is_string($arg)) &&
- (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
- } else {
- // Is it a numeric value?
- if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
- if (is_bool($arg)) {
- $arg = (integer) $arg;
- } elseif (is_string($arg)) {
- $arg = 0;
- }
- $summerA += ($arg * $arg);
- $summerB += $arg;
- ++$aCount;
- }
- }
- }
-
- if ($aCount > 0) {
- $summerA *= $aCount;
- $summerB *= $summerB;
- $returnValue = ($summerA - $summerB) / ($aCount * $aCount);
- }
- return $returnValue;
- }
-
-
- /**
- * WEIBULL
- *
- * Returns the Weibull distribution. Use this distribution in reliability
- * analysis, such as calculating a device's mean time to failure.
- *
- * @param float $value
- * @param float $alpha Alpha Parameter
- * @param float $beta Beta Parameter
- * @param boolean $cumulative
- * @return float
- *
- */
- public static function WEIBULL($value, $alpha, $beta, $cumulative)
- {
- $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
- $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
- $beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta);
-
- if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta))) {
- if (($value < 0) || ($alpha <= 0) || ($beta <= 0)) {
- return PHPExcel_Calculation_Functions::NaN();
- }
- if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
- if ($cumulative) {
- return 1 - exp(0 - pow($value / $beta, $alpha));
- } else {
- return ($alpha / pow($beta, $alpha)) * pow($value, $alpha - 1) * exp(0 - pow($value / $beta, $alpha));
- }
- }
- }
- return PHPExcel_Calculation_Functions::VALUE();
- }
-
-
- /**
- * ZTEST
- *
- * Returns the Weibull distribution. Use this distribution in reliability
- * analysis, such as calculating a device's mean time to failure.
- *
- * @param float $dataSet
- * @param float $m0 Alpha Parameter
- * @param float $sigma Beta Parameter
- * @param boolean $cumulative
- * @return float
- *
- */
- public static function ZTEST($dataSet, $m0, $sigma = null)
- {
- $dataSet = PHPExcel_Calculation_Functions::flattenArrayIndexed($dataSet);
- $m0 = PHPExcel_Calculation_Functions::flattenSingleValue($m0);
- $sigma = PHPExcel_Calculation_Functions::flattenSingleValue($sigma);
-
- if (is_null($sigma)) {
- $sigma = self::STDEV($dataSet);
- }
- $n = count($dataSet);
-
- return 1 - self::NORMSDIST((self::AVERAGE($dataSet) - $m0) / ($sigma / SQRT($n)));
- }
- }
|